New model of muscular dystrophy provides insight into disease development

August 27, 2012

Muscular dystrophy is a complicated set of genetic diseases in which genetic mutations affect the various proteins that contribute to a complex that is required for a structural bridge between muscle cells and the extracellular matrix (ECM) that provides the physical and chemical environment required for their development and function.

The affects of these in patients vary widely, even when the same gene is affected. In order to develop treatments for this disease, it is important to have an animal model that accurately reflects the course of the disease in humans.

In this issue of the , researchers at the University of Iowa report the development of a mouse model of Fukuyama's muscular dystrophy that copies the pathology seen in the human form of the disease.

By removing the gene fukutin from at various points during development, researchers led by Kevin Campbell were able to determine that fukutin disrupts important modifications of dystrophin that prevent the from attaching to the ECM. Disruption of the gene earlier in development led to a more severe form of the disease, suggesting that fukutin is important for muscle maturation. Disruptions in later stages of development caused a less severe form of the disease.

In a companion piece, Elizabeth McNally of the University of Chicago discusses the implications of this disease model for the development of new therapies to treat muscular dystrophy.

More information: Mouse fukutin deletion impairs dystroglycan processing and recapitulates muscular dystrophy, Journal of Clinical Investigation, 2012.
The attachment disorders of muscle: failure to carb-load, Journal of Clinical Investigation, 2012.

Related Stories

Recommended for you

Researchers develop treatment to reduce rate of cleft palate relapse complication

September 22, 2017
Young people with cleft palate may one day face fewer painful surgeries and spend less time undergoing uncomfortable orthodontic treatments thanks to a new therapy developed by researchers from the UCLA School of Dentistry. ...

Exosomes are the missing link to insulin resistance in diabetes

September 21, 2017
Chronic tissue inflammation resulting from obesity is an underlying cause of insulin resistance and type 2 diabetes. But the mechanism by which this occurs has remained cloaked, until now.

Thousands of new microbial communities identified in human body

September 20, 2017
A new study of the human microbiome—the trillions of microbial organisms that live on and within our bodies—has analyzed thousands of new measurements of microbial communities from the gut, skin, mouth, and vaginal microbiome, ...

Study finds immune system is critical to regeneration

September 20, 2017
The answer to regenerative medicine's most compelling question—why some organisms can regenerate major body parts such as hearts and limbs while others, such as humans, cannot—may lie with the body's innate immune system, ...

Immune cells produce wound healing factor, could lead to new IBD treatment

September 20, 2017
Specific immune cells have the ability to produce a healing factor that can promote wound repair in the intestine, a finding that could lead to new, potential therapeutic treatments for inflammatory bowel disease (IBD), according ...

As men's weight rises, sperm health may fall

September 20, 2017
(HealthDay)—A widening waistline may make for shrinking numbers of sperm, new research suggests.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.