'Organic' study of live pancreatic tissue yields new opportunities for diabetes research

August 17, 2012
This is a pancreatic islet viewed with auto-fluorescence. Credit: Alan K. Lam

An 'all-natural' method for studying pancreatic islets, the small tissues responsible for insulin production and regulation in the body, has recently been developed by researchers at the University of Toronto's Institute of Biomaterials and Biomedical Engineering (IBBME) to try to track metabolic changes in living tissues in 'real time' and without additional chemicals or drugs.

It's an organically-minded approach that could lead to big changes in our understanding of and other diseases.

Assistant Professor Jonathon V. Rocheleau of the Institute of and (IBBME), Department of Medicine, Division of Endocrinology & Metabolism, and Toronto General Research Institute Affiliated Scientist, along with third-year IBBME doctoral student Alan K. Lam, devised a small microfluidic tool to carry glucose and fatty acid solutions through small channels holding live pancreatic tissues.

The tissues are then caught against a 'dam', only a fraction of a millimeter in height, which keeps them stationary while the glucose solutions flow by, making it possible for scientists to monitor metabolic activities in the tissues to the glucose solutions as they happen.

The method represents a vital paradigm shift in metabolic research.

"We've created a new opportunity for tissue studies" stated Rocheleau. "Using our techniques, we're looking at metabolism as it occurs and as naturally as possible."

Standard studies involve either non-living pancreatic tissue, or require the addition of chemicals or drugs to track changes in living tissues. Now, with this new 'all-natural' approach, tissues are kept in conditions as close to their natural processes as possible.

Researchers are then able to track changes in the tissues in a pristine, natural state by viewing mitochondrial proteins in the tissue which are illuminated by their own, natural luminescence.

"We don't need to use any drugs," added Lam, the study's lead author.

The combined techniques and their results are the subject of a cover article for the current issue of Integrative Biology. And the results so far have been eye-opening.

Within just twenty minutes of being subject to a glucose cocktail, the pancreatic tissues stopped metabolizing fat, its natural source of food during fasting, leading to a sharp metabolic change in the cells and possible toxicity.

Now that Rocheleau and his lab have tracked normal physiological responses to sugar spikes, the same imaging study can be used in diabetic tissue models, leading to a deeper understanding of the disease.

But the new, integrative approach to research also offers hope for research into other diseases. "I would love cancer researchers to be able to pick this up and use it to see how cells change their metabolism," said Rocheleau.

"This method is absolutely translatable to other diseases," Lam added.

Explore further: Metabolic shift may offer early cancer clue

Related Stories

Metabolic shift may offer early cancer clue

July 5, 2011
Cancer cells are well known for their altered metabolisms, which may help them generate the energy they need for rapid growth. Using an emerging imaging technology, researchers reporting in the July Cell Metabolism, a Cell ...

Lecithin component may reduce fatty liver, improve insulin sensitivity

May 25, 2011
A natural product called DLPC (dilauroyl phosphatidylcholine) increases sensitivity to insulin and reduces fatty liver in mice, leading Baylor College of Medicine researchers to believe it may provide a treatment for prediabetic ...

Recommended for you

Immune cells produce wound healing factor, could lead to new IBD treatment

September 20, 2017
Specific immune cells have the ability to produce a healing factor that can promote wound repair in the intestine, a finding that could lead to new, potential therapeutic treatments for inflammatory bowel disease (IBD), according ...

Researchers find way to convert bad body fat into good fat

September 19, 2017
There's good fat and bad fat in our bodies. The good fat helps burn calories, while the bad fat hoards calories, contributing to weight gain and obesity. Now, new research at Washington University School of Medicine in St. ...

New model may help science overcome the brain's fortress-like barrier

September 19, 2017
Scientists have helped provide a way to better understand how to enable drugs to enter the brain and how cancer cells make it past the blood brain barrier.

Cell-based therapy success could be boosted by new antioxidant

September 19, 2017
Cell therapies being developed to treat a range of conditions could be improved by a chemical compound that aids their survival, research suggests.

Study suggests epilepsy drug can be used to treat form of dwarfism

September 19, 2017
A drug used to treat conditions such as epilepsy has been shown in lab tests at The University of Manchester to significantly improve bone growth impaired by a form of dwarfism.

Research predicts how patients are likely to respond to DNA drugs

September 19, 2017
Research carried out by academics at Northumbria University, Newcastle could lead to improvements in treating patients with diseases caused by mutations in genes, such as cancer, cystic fibrosis and potentially up to 6,000 ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.