Study investigates proton radiation effects on cells

August 5, 2012

(Phys.org) -- A team of researchers at NASA's Johnson Space Center in Houston and Lawrence Berkeley National Laboratory in Berkeley, Calif., has found radiation from protons could further enhance a process that occurs during tumor progression. This information may help lead to better methods to protect astronauts from the harmful effects of radiation in space, as well as help cancer researchers on Earth better understand the effects of radiation treatment on the human body.

NASA is particularly interested in this research because protons, which are charged , are the main source of space radiation astronauts receive during spaceflights. The study was part of NASA's ongoing effort to learn how to mitigate the effects of radiation during long-duration missions to destinations beyond , such as asteroids and Mars.

"Our paper makes new discoveries on the potential risks from low doses of protons that occur outside of the tumor during radiation therapy, and to all tissues for astronauts exposed to space radiation," said Francis A. Cucinotta, chief scientist for the Human Research Program Space Radiation Program Element at Johnson and one of the authors of the paper.

The objective of the researchers was to study the biological effects of low-energy protons on epithelial cells (membranous tissues found throughout the body) and the protons' propensity to enhance a process that occurs during . This process is called epithelial-mesenchymal transition (EMT), which has been associated with . EMT also has been linked to radiation-induced fibrosis, one of the most common late effects of radiotherapy.

Notably, the study revealed protons alone can induce EMT-associated changes in normal human epithelial cells. Although the total body dose received in space is moderately low compared to what is received in radiotherapy, this study reveals that low doses of protons still may prompt EMT and result in potentially detrimental effects.

These studies were conducted at Johnson and at the NASA Laboratory at Brookhaven National Laboratory, Upton, N.Y.

Results of the study were published as "Protons Sensitize Epithelial Cells to Mesenchymal Transition" in the July 23 issue of the journal PLoS ONE.

More information: dx.plos.org/10.1371/journal.pone.0041249

Related Stories

Recommended for you

Researchers release first draft of a genome-wide cancer 'dependency map'

July 27, 2017
In one of the largest efforts to build a comprehensive catalog of genetic vulnerabilities in cancer, researchers from the Broad Institute of MIT and Harvard and Dana-Farber Cancer Institute have identified more than 760 genes ...

Cancer-death button gets jammed by gut bacterium

July 27, 2017
Researchers at Michigan Medicine and in China showed that a type of bacterium is associated with the recurrence of colorectal cancer and poor outcomes. They found that Fusobacterium nucleatum in the gut can stop chemotherapy ...

Long-sought mechanism of metastasis is discovered in pancreatic cancer

July 27, 2017
Cells, just like people, have memories. They retain molecular markers that at the beginning of their existence helped guide their development. Cells that become cancerous may be making use of these early memories to power ...

Blocking the back-door that cancer cells use to escape death by radiotherapy

July 27, 2017
A natural healing mechanism of the body may be reducing the efficiency of radiotherapy in breast cancer patients, according to a new study.

Manmade peptides reduce breast cancer's spread

July 27, 2017
Manmade peptides that directly disrupt the inner workings of a gene known to support cancer's spread significantly reduce metastasis in a mouse model of breast cancer, scientists say.

Glowing tumor technology helps surgeons remove hidden cancer cells

July 27, 2017
Surgeons were able to identify and remove a greater number of cancerous nodules from lung cancer patients when combining intraoperative molecular imaging (IMI) - through the use of a contrast agent that makes tumor cells ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.