With a little training, signs of schizophrenia are averted

August 22, 2012

Animals that literally have holes in their brains can go on to behave as normal adults if they've had the benefit of a little cognitive training in adolescence. That's according to new work in the August 23 Neuron, a Cell Press publication, featuring an animal model of schizophrenia, where rats with particular neonatal brain injuries develop schizophrenia-like symptoms.

"The can be loaded with all sorts of problems," said André Fenton of New York University. "What this work shows is that experience can overcome those disabilities."

Fenton's team made the discovery completely by accident. His team was interested in what Fenton considers a core problem in schizophrenia: the inability to sift through confusing or conflicting information and focus on what's relevant.

"As you walk through the world, you might be focused on a phone conversation, but there are also kids in the park and cars and other distractions," he explained. "These information streams are all competing for our brain to process them. That's a really challenging situation for someone with schizophrenia."

Fenton and his colleagues developed a laboratory test of cognitive control needed for that kind of focus. In the test, rats had to learn to avoid a foot shock while they were presented with conflicting information. Normal rats can manage that task quickly. Rats with brain lesions can also manage this task, but only up until they become young adults—the equivalent of an 18- or 20-year-old person—when signs of schizophrenia typically set in.

While that was good to see, Fenton says, it wasn't really all that surprising. But then some unexpected circumstances in the lab led them to test animals with adolescent experience in the cognitive control test again, once they had grown into adults.

These should have shown cognitive control deficits, similar to those that had not received prior cognitive training, or so the researchers thought. Instead, they were just fine. Their schizophrenic symptoms had somehow been averted.

Fenton believes their early training for focus forged some critical neural connections, allowing the animals to compensate for the injury still present in their brains in adulthood. Not only were the animals' behaviors normalized with training, but the patterns of activity in their brains were also.

The finding is consistent with the notion that mental disorders are the consequence of problems in brain development that might have gotten started years before. They raise the optimistic hope that the right kinds of experiences at the right time could change the future by enabling people to better manage their diseases and better function in society. Adolescence, when the brain undergoes significant change and maturation, might be a prime time for such training.

"You may have a damaged brain, but the consequences of that damage might be overcome without changing the damage itself," Fenton says. "You could target , but other disorders aren't very different," take autism or depression, for example.

And really, in this world of infinite distraction, couldn't we all use a little more cognitive control?

Explore further: Researchers find benefits to early intervention in addressing brain abnormalities

More information: Lee et al.: "Early cognitive experience prevents adult deficits in a neurodevelopmental schizophrenia model. DOI:10.1016/j.neuron.2012.06.016

Related Stories

Researchers find benefits to early intervention in addressing brain abnormalities

August 22, 2012
an early intervention to address neuropsychiatric deficiencies—can help the brain function normally later in life, a team of researchers has found through a series of experiments on laboratory rats. Their findings, ...

Restoring reality: Training improves brain activation and behavior in schizophrenia

February 22, 2012
A pioneering new study finds that a specific type of computerized cognitive training can lead to significant neural and behavioral improvements in individuals with schizophrenia. The research, published by Cell Press in the ...

Sociability may depend upon brain cells generated in adolescence

October 4, 2011
Mice become profoundly anti-social when the creation of new brain cells is interrupted in adolescence, a surprising finding that may help researchers understand schizophrenia and other mental disorders, Yale researchers report.

Researchers gain new insight into prefrontal cortex activity

March 5, 2012
The brain has a remarkable ability to learn new cognitive tasks while maintaining previously acquired knowledge about various functions necessary for everyday life. But exactly how new information is incorporated into brain ...

Recommended for you

Activating MSc glutamatergic neurons found to cause mice to eat less

December 13, 2017
(Medical Xpress)—A trio of researchers working at the State University of New York has found that artificially stimulating neurons that exist in the medial septal complex in mouse brains caused test mice to eat less. In ...

Scientists discover blood sample detection method for multiple sclerosis

December 13, 2017
A method for quickly detecting signs of multiple sclerosis has been developed by a University of Huddersfield research team.

LLNL-developed microelectrodes enable automated sorting of neural signals

December 13, 2017
Thin-film microelectrode arrays produced at Lawrence Livermore National Laboratory (LLNL) have enabled development of an automated system to sort brain activity by individual neurons, a technology that could open the door ...

Intermittent fasting found to increase cognitive functions in mice

December 12, 2017
(Medical Xpress)—The Daily Mail spoke with the leader of a team of researchers with the National Institute on Aging in the U.S. and reports that they have found that putting mice on a diet consisting of eating nothing every ...

Discovery deepens understanding of brain's sensory circuitry

December 12, 2017
Because they provide an exemplary physiological model of how the mammalian brain receives sensory information, neural structures called "mouse whisker barrels" have been the subject of study by neuroscientists around the ...

Neuroscientists show deep brain waves occur more often during navigation and memory formation

December 12, 2017
UCLA neuroscientists are the first to show that rhythmic waves in the brain called theta oscillations happen more often when someone is navigating an unfamiliar environment, and that the more quickly a person moves, the more ...

1 comment

Adjust slider to filter visible comments by rank

Display comments: newest first

DarkHorse66
5 / 5 (1) Aug 23, 2012
"the inability to sift through confusing or conflicting information and focus on what's relevant."
This is what is known as a processing disorder/deficit. It can also be a common and prominent feature of ADHD. (probably of a few other conditions disorders as well) But no mention of that. Why are they only focusing on it as being part of schizophrenia? This article kind makes it imply that anyone with this deficit will develop schizophrenia at some stage. It is too one-sided. Although it is a good start, there is no sign that they propose to differentiate between the two or more (but equally valid) very dissimilar possible outcomes. Bad move. Regards, DH66

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.