With a little training, signs of schizophrenia are averted

August 22, 2012

Animals that literally have holes in their brains can go on to behave as normal adults if they've had the benefit of a little cognitive training in adolescence. That's according to new work in the August 23 Neuron, a Cell Press publication, featuring an animal model of schizophrenia, where rats with particular neonatal brain injuries develop schizophrenia-like symptoms.

"The can be loaded with all sorts of problems," said André Fenton of New York University. "What this work shows is that experience can overcome those disabilities."

Fenton's team made the discovery completely by accident. His team was interested in what Fenton considers a core problem in schizophrenia: the inability to sift through confusing or conflicting information and focus on what's relevant.

"As you walk through the world, you might be focused on a phone conversation, but there are also kids in the park and cars and other distractions," he explained. "These information streams are all competing for our brain to process them. That's a really challenging situation for someone with schizophrenia."

Fenton and his colleagues developed a laboratory test of cognitive control needed for that kind of focus. In the test, rats had to learn to avoid a foot shock while they were presented with conflicting information. Normal rats can manage that task quickly. Rats with brain lesions can also manage this task, but only up until they become young adults—the equivalent of an 18- or 20-year-old person—when signs of schizophrenia typically set in.

While that was good to see, Fenton says, it wasn't really all that surprising. But then some unexpected circumstances in the lab led them to test animals with adolescent experience in the cognitive control test again, once they had grown into adults.

These should have shown cognitive control deficits, similar to those that had not received prior cognitive training, or so the researchers thought. Instead, they were just fine. Their schizophrenic symptoms had somehow been averted.

Fenton believes their early training for focus forged some critical neural connections, allowing the animals to compensate for the injury still present in their brains in adulthood. Not only were the animals' behaviors normalized with training, but the patterns of activity in their brains were also.

The finding is consistent with the notion that mental disorders are the consequence of problems in brain development that might have gotten started years before. They raise the optimistic hope that the right kinds of experiences at the right time could change the future by enabling people to better manage their diseases and better function in society. Adolescence, when the brain undergoes significant change and maturation, might be a prime time for such training.

"You may have a damaged brain, but the consequences of that damage might be overcome without changing the damage itself," Fenton says. "You could target , but other disorders aren't very different," take autism or depression, for example.

And really, in this world of infinite distraction, couldn't we all use a little more cognitive control?

Explore further: Researchers find benefits to early intervention in addressing brain abnormalities

More information: Lee et al.: "Early cognitive experience prevents adult deficits in a neurodevelopmental schizophrenia model. DOI:10.1016/j.neuron.2012.06.016

Related Stories

Researchers find benefits to early intervention in addressing brain abnormalities

August 22, 2012
an early intervention to address neuropsychiatric deficiencies—can help the brain function normally later in life, a team of researchers has found through a series of experiments on laboratory rats. Their findings, ...

Restoring reality: Training improves brain activation and behavior in schizophrenia

February 22, 2012
A pioneering new study finds that a specific type of computerized cognitive training can lead to significant neural and behavioral improvements in individuals with schizophrenia. The research, published by Cell Press in the ...

Sociability may depend upon brain cells generated in adolescence

October 4, 2011
Mice become profoundly anti-social when the creation of new brain cells is interrupted in adolescence, a surprising finding that may help researchers understand schizophrenia and other mental disorders, Yale researchers report.

Researchers gain new insight into prefrontal cortex activity

March 5, 2012
The brain has a remarkable ability to learn new cognitive tasks while maintaining previously acquired knowledge about various functions necessary for everyday life. But exactly how new information is incorporated into brain ...

Recommended for you

Faulty cell signaling derails cerebral cortex development, could it lead to autism?

September 20, 2017
As the embryonic brain develops, an incredibly complex cascade of cellular events occur, starting with progenitors - the originating cells that generate neurons and spur proper cortex development. If this cascade malfunctions ...

Research redefines proteins' role in the development of spinal sensory cells

September 19, 2017
A recent study led by Samantha Butler at the Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research at UCLA has overturned a common belief about how a certain class of proteins in the spinal cord regulate ...

The brain at work: Spotting half-hidden objects

September 19, 2017
How does a driver's brain realize that a stop sign is behind a bush when only a red edge is showing? Or how can a monkey suspect that the yellow sliver in the leaves is a round piece of fruit?

Team discovers how to train damaging inflammatory cells to promote repair after stroke

September 19, 2017
White blood cells called neutrophils are like soldiers in your body that form in the bone marrow and at the first sign of microbial attack, head for the site of injury just as fast as they can to neutralize invading bacteria ...

Epileptic seizures show long-distance effects

September 19, 2017
The area in which an epileptic seizure starts in the brain, may be small but it reaches other parts of the brain at distances of over ten centimeters. That distant activity, in turn, influences the epileptic core, according ...

Study uncovers markers for severe form of multiple sclerosis

September 18, 2017
Scientists have uncovered two closely related cytokines—molecules involved in cell communication and movement—that may explain why some people develop progressive multiple sclerosis (MS), the most severe form of the disease. ...

1 comment

Adjust slider to filter visible comments by rank

Display comments: newest first

DarkHorse66
5 / 5 (1) Aug 23, 2012
"the inability to sift through confusing or conflicting information and focus on what's relevant."
This is what is known as a processing disorder/deficit. It can also be a common and prominent feature of ADHD. (probably of a few other conditions disorders as well) But no mention of that. Why are they only focusing on it as being part of schizophrenia? This article kind makes it imply that anyone with this deficit will develop schizophrenia at some stage. It is too one-sided. Although it is a good start, there is no sign that they propose to differentiate between the two or more (but equally valid) very dissimilar possible outcomes. Bad move. Regards, DH66

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.