New scientific method unmasks chronic infections

August 8, 2012

Chronic infections are a large and growing problem throughout the developed world, and intensive research is being conducted in ways to combat the recalcitrant bacteria. When bacteria aggregate into so-called biofilm, they become resistant to antibiotics. Until now scientists have only been able to speculate about what happens when bacteria overpower the immune system during a chronic infection.

In close collaboration between various specialist fields, Danish scientists have now developed a method that gives a precise picture of how the immune system works. Using 5 mm silicone tubes, scientists created a that allows them to look closely at how the immune system and bacteria interact in isolation:

"Although we have always suspected that to cause a chronic infection, bacteria knock out the immune system's , the new method allows us to see precisely what happens. Instead of looking down on the bacterial surface, we can examine a section to see the interaction directly and follow how the bacteria react to white blood cells and to antibiotics. That enables us to understand the basic processes behind ," explains Associate Professor Thomas Bjarnsholt, University of Copenhagen.

The video will load shortly.
With the aid of tiny silicon tubes and one of Europe's most sophisticated centres for microscopy, scientists from University of Copenhagen have been able for the first time to observe directly bacteria in chronic infections. Researchers can now see precisely how bacteria and the immune system interact in living tissue. This opens the potential for developing new medicine to fight resistant bacteria. The results have recently been published in the scientific journal Infection and Immunity. In the video Associate Professor Thomas Bjarnsholt explains the new method. Credit: University of Copenhagen

Maria Alhede adds: "The new method allows us to investigate which compounds the bacteria are secreting while overpowering the white blood cells. Conversely, we can also see what happens when the immune system works. The white blood cells make DNA traps that capture the bacteria, but that used to be only a guess," relates Maria Alhede, Department for International Health, Immunology and Microbiology.

Scientists follow the effect of drugs in the organism

The Core Facility for Integrated Microscopy at the Department of has some of Europe's most sophisticated for conducting . By combining and , scientists can show visually exactly what happens in the body when biofilm bacteria meet the immune system or are treated with antibiotics. The method also makes it possible to investigate what processes are activated when scientists test new medicine. Many different types of patients will benefit from the discoveries.

"Chronic infections most often arise when we introduce foreign objects into the body, such as catheters and implants like artificial hips and knees. But chronic bacterial infections also plague many children with middle-ear infections, as well as diabetics, who run a great risk of developing chronic sores on legs and feet. For patients with cystic fibrosis, the chronic pneumonia caused by the aggressive Pseudomonas bacteria is directly life-threatening. Now we have the opportunity to see the exact mechanism of a drug," explains Professor Niels Højby from Rigshospitalet.

Scientists hope that many people will eventually benefit from the method and that it can contribute knowledge to other areas, such as immunology, because the results were achieved in the interface between various research areas:

"We asked the right questions of the right experiments many times and over a long period. Success is due to collaboration across the lines of research groups and our exploitation of the finely meshed network of expertise," explains Associate Professor Thomas Bjarnsholt.

More information: iai.asm.org/content/80/8/2601.full.pdf+html

Related Stories

Recommended for you

Scientists find RNA with special role in nerve healing process

August 22, 2017
Scientists may have identified a new opening to intervene in the process of healing peripheral nerve damage with the discovery that an "anti-sense" RNA (AS-RNA) is expressed when nerves are injured. Their experiments in mice ...

Mouse model of human immune system inadequate for stem cell studies

August 22, 2017
A type of mouse widely used to assess how the human immune system responds to transplanted stem cells does not reflect what is likely to occur in patients, according to a study by researchers at the Stanford University School ...

Researchers offer new targets for drugs against fatty liver disease and liver cancer

August 22, 2017
There may no silver bullet for treating liver cancer or fatty liver disease, but knowing the right targets will help scientists develop the most effective treatments. Researchers in Sweden have just identified a number of ...

Common antiseptic ingredients de-energize cells and impair hormone response

August 22, 2017
A new in-vitro study by University of California, Davis, researchers indicates that quaternary ammonium compounds, or "quats," used as antimicrobial agents in common household products inhibit mitochondria, the powerhouses ...

Gut microbes may talk to the brain through cortisol

August 21, 2017
Gut microbes have been in the news a lot lately. Recent studies show they can influence human health, behavior, and certain neurological disorders, such as autism. But just how do they communicate with the brain? Results ...

Link between cells associated with aging and bone loss

August 21, 2017
Mayo Clinic researchers have reported a causal link between senescent cells - the cells associated with aging and age-related disease - and bone loss in mice. Targeting these cells led to an increase in bone mass and strength. ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.