Sperm precursor cells made in the lab could one day restore male fertility

August 28, 2012

(Medical Xpress)—Human embryonic stem cells (hESCs) and human induced pluripotent stem cells (hiPSCs) can be coaxed into becoming precursor sperm cells, suggesting that it might be possible one day to restore fertility for sterile males with an easily obtained skin sample, according to researchers at the University of Pittsburgh School of Medicine. Their findings are available today in the online version of Cell Reports.

Infertility can be a side effect of some cancer treatments because the drugs work by destroying rapidly-dividing cells, which includes sperm , explained the study's lead author Charles Easley, Ph.D., formerly a post-doctoral fellow in the Department of Obstetrics, Gynecology and Reproductive Sciences at the University of Pittsburgh School of Medicine, and now a faculty member at Emory University.

"Sperm can be banked for future procedures, but that does not help some patients, such as pre-pubertal boys," Dr. Easley said. "There are procedures to store testicular tissue prior to , but men who didn't have the opportunity to save tissue are permanently sterile, and so far there are no cures for their sterility."

There is growing research evidence that adult , such as those of the skin, can be induced or biologically prodded to return to a more primitive state and then redirected to become different cell types. To see if it was possible to derive sperm cells Dr. Easley and his colleagues cultured lab-grade hiPSCs from commercially available skin samples, as well as hESCs from established cell lines, in conditions typically used to sustain spermatogonial stem cells.

They found that both kinds of stem cells were able to generate key cells, including the spermatogonial stem cells, spermatocytes containing a full complement of chromosomes prior to cell division known as meiosis, then post-meiotic spermatocytes with half the chromosome number, and round spermatids, which are precursors to sperm. Testing of certain chromosome sites showed correct parent-of-origin genomic imprints in these haploid cells as well, the researchers noted.

"No one has been able to make human sperm from in the lab, but this research indicates it might be possible," Dr. Easley said. "This model also gives us a unique opportunity to study the molecular signals that govern the process, allowing us to learn much more about how sperm are made. Perhaps one day this will lead to new ways of diagnosing and treating male infertility."

Explore further: Making sperm from stem cells in a dish

Related Stories

Making sperm from stem cells in a dish

August 4, 2011
Researchers have found a way to turn mouse embryonic stem cells into sperm. This finding, reported in the journal Cell in a special online release on August 4th, opens up new avenues for infertility research and treatment. ...

Recommended for you

Researchers describe mechanism that underlies age-associated bone loss

September 22, 2017
A major health problem in older people is age-associated osteoporosis—the thinning of bone and the loss of bone density that increases the risk of fractures. Often this is accompanied by an increase in fat cells in the ...

Researchers develop treatment to reduce rate of cleft palate relapse complication

September 22, 2017
Young people with cleft palate may one day face fewer painful surgeries and spend less time undergoing uncomfortable orthodontic treatments thanks to a new therapy developed by researchers from the UCLA School of Dentistry. ...

Exosomes are the missing link to insulin resistance in diabetes

September 21, 2017
Chronic tissue inflammation resulting from obesity is an underlying cause of insulin resistance and type 2 diabetes. But the mechanism by which this occurs has remained cloaked, until now.

Thousands of new microbial communities identified in human body

September 20, 2017
A new study of the human microbiome—the trillions of microbial organisms that live on and within our bodies—has analyzed thousands of new measurements of microbial communities from the gut, skin, mouth, and vaginal microbiome, ...

Study finds immune system is critical to regeneration

September 20, 2017
The answer to regenerative medicine's most compelling question—why some organisms can regenerate major body parts such as hearts and limbs while others, such as humans, cannot—may lie with the body's innate immune system, ...

Immune cells produce wound healing factor, could lead to new IBD treatment

September 20, 2017
Specific immune cells have the ability to produce a healing factor that can promote wound repair in the intestine, a finding that could lead to new, potential therapeutic treatments for inflammatory bowel disease (IBD), according ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.