Sperm precursor cells made in the lab could one day restore male fertility

August 28, 2012

(Medical Xpress)—Human embryonic stem cells (hESCs) and human induced pluripotent stem cells (hiPSCs) can be coaxed into becoming precursor sperm cells, suggesting that it might be possible one day to restore fertility for sterile males with an easily obtained skin sample, according to researchers at the University of Pittsburgh School of Medicine. Their findings are available today in the online version of Cell Reports.

Infertility can be a side effect of some cancer treatments because the drugs work by destroying rapidly-dividing cells, which includes sperm , explained the study's lead author Charles Easley, Ph.D., formerly a post-doctoral fellow in the Department of Obstetrics, Gynecology and Reproductive Sciences at the University of Pittsburgh School of Medicine, and now a faculty member at Emory University.

"Sperm can be banked for future procedures, but that does not help some patients, such as pre-pubertal boys," Dr. Easley said. "There are procedures to store testicular tissue prior to , but men who didn't have the opportunity to save tissue are permanently sterile, and so far there are no cures for their sterility."

There is growing research evidence that adult , such as those of the skin, can be induced or biologically prodded to return to a more primitive state and then redirected to become different cell types. To see if it was possible to derive sperm cells Dr. Easley and his colleagues cultured lab-grade hiPSCs from commercially available skin samples, as well as hESCs from established cell lines, in conditions typically used to sustain spermatogonial stem cells.

They found that both kinds of stem cells were able to generate key cells, including the spermatogonial stem cells, spermatocytes containing a full complement of chromosomes prior to cell division known as meiosis, then post-meiotic spermatocytes with half the chromosome number, and round spermatids, which are precursors to sperm. Testing of certain chromosome sites showed correct parent-of-origin genomic imprints in these haploid cells as well, the researchers noted.

"No one has been able to make human sperm from in the lab, but this research indicates it might be possible," Dr. Easley said. "This model also gives us a unique opportunity to study the molecular signals that govern the process, allowing us to learn much more about how sperm are made. Perhaps one day this will lead to new ways of diagnosing and treating male infertility."

Explore further: Making sperm from stem cells in a dish

Related Stories

Making sperm from stem cells in a dish

August 4, 2011
Researchers have found a way to turn mouse embryonic stem cells into sperm. This finding, reported in the journal Cell in a special online release on August 4th, opens up new avenues for infertility research and treatment. ...

Recommended for you

Time of day affects severity of autoimmune disease

December 12, 2017
Insights into how the body clock and time of day influence immune responses are revealed today in a study published in leading international journal Nature Communications. Understanding the effect of the interplay between ...

Potassium is critical to circadian rhythms in human red blood cells

December 12, 2017
An innovative new study from the University of Surrey and Cambridge's MRC Laboratory of Molecular Biology, published in the prestigious journal Nature Communications, has uncovered the secrets of the circadian rhythms in ...

Study confirms link between the number of older brothers and increased odds of being homosexual

December 12, 2017
Groundbreaking research led by a team from Brock University has further confirmed that sexual orientation for men is likely determined in the womb.

Team identifies DNA element that may cause rare movement disorder

December 11, 2017
A team of Massachusetts General Hospital (MGH) researchers has identified a specific genetic change that may be the cause of a rare but severe neurological disorder called X-linked dystonia parkinsonism (XDP). Occurring only ...

Protein Daple coordinates single-cell and organ-wide directionality in the inner ear

December 11, 2017
Humans inherited the capacity to hear sounds thanks to structures that evolved millions of years ago. Sensory "hair cells" in the inner ear have the amazing ability to convert sound waves into electrical signals and transmit ...

Gene therapy improves immunity in babies with 'bubble boy' disease

December 9, 2017
Early evidence suggests that gene therapy developed at St. Jude Children's Research Hospital will lead to broad protection for infants with the devastating immune disorder X-linked severe combined immunodeficiency disorder. ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.