Survival statistics show hard fight when malignant brain tumors appear at multiple sites

August 24, 2012

LOS ANGELES (Embargoed until 10 a.m. EDT on Aug. 24, 2012) – When aggressive, malignant tumors appear in more than one location in the brain, patient survival tends to be significantly shorter than when the disease starts as a single tumor, even though patients in both groups undergo virtually identical treatments, according to research at Cedars-Sinai Medical Center's Maxine Dunitz Neurosurgical Research Institute.

"We've known that certain independent factors, such as age at diagnosis, amount of after surgery, and the patient's functional status are useful in predicting outcomes in patients with glioblastoma multiforme, but multifocal disease at time of onset has rarely been examined in this context. Two small previous studies were contradictory. Our study appears to confirm observations that disease in patients with more than one lesion is particularly challenging and that these patients tend to have worse outcomes. Matched survival analysis demonstrated that multifocal disease is a strong and negative independent prognostic factor," said Chirag G. Patil, MD, director of the Center for Neurosurgical Outcomes Research in the Department of Neurosurgery at Cedars-Sinai Medical Center.

The researchers compared outcomes of 47 patients who had multiple tumors with 47 who had a single lesion, matching them for age, functional impairment scores, extent of removal and radiation therapy and chemotherapy. Median overall survival for the multifocal group was six months, compared to 11 months for those in the single tumor group.

Patil, first author of an article in the Aug. 24 , noted that a comparatively large percentage of tumors in the multifocal group appeared to be "treatment resistant," continuing to grow even after patients underwent radiation therapy.

Unlike earlier studies, nearly all of these patients were diagnosed and treated during the "temozolomide era," beginning in 2005 when this drug joined as the mainstay of glioblastoma treatment. Even so, 11 of the 47 patients in the multifocal group did not receive temozolomide because, the researchers suggest, disease progression is so quick that many patients are unable to start or complete standard therapies.

Patil said researchers believe cells of multifocal tumors may have an increased ability to migrate in the brain and invade normal tissue, leading to more rapid patient decline; recent advances in therapies for glioblastomas have not improved survival in these patients.

"A thorough investigation of the unique biology of these tumors and their invasive and migratory mechanisms is needed so we may develop a new generation of targeted therapies," said Patil, who received a Cedars-Sinai grant that will fund the study of genetic and biological differences between single tumors and those originating at multiple sites.

Glioblastoma multiforme is the most common and aggressive malignant tumor occurring in the brain, and patients typically survive 15 months when undergoing standard treatments. Other single-tumor patients in the larger pool from which those in this study were derived, had median survival of 16 months. The shorter 11-month survival of study patients is believed to result from the matching process: Because many of those with multiple-site tumors could not undergo complete , their corresponding single-site patients had tumors with locations or characteristics that made them appropriate for biopsy only.

Explore further: Latest vaccine study supports immune targeting of brain tumors

More information: Journal of Neurosurgery, Aug. 24, 2012

Related Stories

Latest vaccine study supports immune targeting of brain tumors

June 16, 2011
An experimental vaccine developed by researchers at Cedars-Sinai Medical Center's Maxine Dunitz Neurosurgical Institute targets overactive antigens in highly aggressive brain tumors and improves length of survival in newly ...

Study: Vaccine targets malignant brain cancer antigens, significantly lengthens survival

August 15, 2012
An experimental immune-based therapy more than doubled median survival of patients diagnosed with the most aggressive malignant brain tumor, Cedars-Sinai Medical Center researchers reported in Cancer Immunology, Immunotherapy, ...

Gene change identifies brain cancer patients that respond better to treatment

May 31, 2011
New research proves that a change in a particular gene can identify which patients with a specific kind of brain cancer will respond better to treatment. Testing for the gene can distinguish patients with a more- or less-aggressive ...

Minimizing side effects from chemoradiation could help brain cancer patients live longer

April 19, 2011
Minimizing neurological side effects in patients with high-grade glioma from chemoradiation may result in improved patient survival, a new study from radiation oncologists at the Kimmel Cancer Center at Jefferson suggests. ...

A culprit behind brain tumor resistance to therapy

March 5, 2012
Persistent protein expression may explain why tumors return after therapy in glioblastoma patients, according to a study published on March 5th in the Journal of Experimental Medicine.

Recommended for you

Highly precise wiring in the cerebral cortex

September 21, 2017
Our brains house extremely complex neuronal circuits whose detailed structures are still largely unknown. This is especially true for the cerebral cortex of mammals, where, among other things, vision, thoughts or spatial ...

Faulty cell signaling derails cerebral cortex development, could it lead to autism?

September 20, 2017
As the embryonic brain develops, an incredibly complex cascade of cellular events occur, starting with progenitors - the originating cells that generate neurons and spur proper cortex development. If this cascade malfunctions ...

Research redefines proteins' role in the development of spinal sensory cells

September 19, 2017
A recent study led by Samantha Butler at the Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research at UCLA has overturned a common belief about how a certain class of proteins in the spinal cord regulate ...

The brain at work: Spotting half-hidden objects

September 19, 2017
How does a driver's brain realize that a stop sign is behind a bush when only a red edge is showing? Or how can a monkey suspect that the yellow sliver in the leaves is a round piece of fruit?

Team discovers how to train damaging inflammatory cells to promote repair after stroke

September 19, 2017
White blood cells called neutrophils are like soldiers in your body that form in the bone marrow and at the first sign of microbial attack, head for the site of injury just as fast as they can to neutralize invading bacteria ...

Epileptic seizures show long-distance effects

September 19, 2017
The area in which an epileptic seizure starts in the brain, may be small but it reaches other parts of the brain at distances of over ten centimeters. That distant activity, in turn, influences the epileptic core, according ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.