Therapy combining exercise and neuroprotective agent shows promise for stroke victims

August 15, 2012
A: This graphic shows the events and mechanisms involved in neurorepair leading to functional recovery by post injury treatment with GSNO and exercise in a rat model of experimental stroke. B: Walking time on a rotating rod is significantly increased with time in exercise and GSNO-treated groups compared with stroke group. However, combination group (exercise+GSNO) shows improved walking time compared with GSNO or exercise group. Sham group (operated without inducing stroke) treated with saline does not show walking deficits. Credit: H. Sakakima et al.

In a study published in the current issue of Restorative Neurology and Neuroscience scientists report that a therapy combining exercise with the neurovascular protective agent S-nitrosoglutathione (GSNO) improved recovery from stroke in a rat model. GSNO is a compound found naturally in the body and it has no known side effects or toxicity.

"In our study, GSNO or motor provided neuroprotection, reduced , maintained tissue structure, and aided by stimulating the expression of neuronal repair mediators," says lead investigator Avtar K. Singh, MD, of the Medical University of South Carolina (MUSC) and the Ralph H. Johnson VA Medical Center, Charleston. "GSNO in combination with exercise accelerated the rate and enhanced the degree of recovery."

Stroke is both an acute disease and a . While the acute phase is associated with cell death and secondary injury, the chronic phase is characterized by insufficient neurorepair mechanisms. Most monotherapies fail because the drugs are not effective in the chronic phase. Rehabilitation has been used to improve neurofunction in the chronic phase, but its efficacy is slow and limited. An ideal therapy would ameliorate the injury in both phases and therefore include a combination of rehabilitation and an agent that provides both neuroprotection and repair, such as GSNO.

Dr. Singh and her colleagues from MUSC (Drs. Mushfiquddin Khan, Harutoshi Sakakima and Inderjit Singh) induced stroke in rats, which were then assigned to one of five treatment groups. The first group received no treatment; the second group was treated with exercise; the third group with GSNO; the fourth group received both exercise and GSNO treatment; and the fifth group received a sham treatment. In the exercise treatment, rats were required to run on a rotating rod motor unit at a constant speed for 20 minutes a day. GSNO was administered throughout the treatment period.

Animals in each group were evaluated for neurological function, motor behavior, and locomotor function before and after the procedure. The size of the infarct was measured. At 7 and 14 days after stroke was induced, brain tissue samples were removed and tested.

Administration of GSNO not only reduced brain injury but also improved neurological scores. Exercise alone could not significantly reduce infarct volume, because the exercise started 72 hours post procedure and infarctions occur before then. However, exercise did improve neurobehavioral functions. Combining the therapies had a synergistic effect, and provided greater functional improvement than either GSNO or exercise alone.

Analysis of the brain tissue found that GSNO accelerates the recovery of neurological and motor functions and enhances the benefit of exercise by stimulating the expression of neurotrophic factor BDNF and its receptors, which play critical roles in neurorepair processes, and by activating Akt, a protein involved in cell proliferation. Dr. Singh and her collaborators Drs. Mushfiquddin Khan and Inderjit Singh conclude, "GSNO is an attractive candidate to be investigated in humans for neurorepair and rehabilitation following stroke."

Explore further: Newly discovered cell mechanism uses amplified nitric oxide to fight C. diff

More information: “Stimulation of functional recovery via the mechanisms of neurorepair by S-nitrosoglutathione and motor exercise in a rat model of transient cerebral ischemia and reperfusion,” by H. Sakakima, M. Khan, T.S. Dhammu, A. Shunmugavel, Y. Yoshida, I. Singh, A.K. Singh. Restorative Neurology and Neuroscience, 30: 5 (September 2012). DOI: 10.3233/RNN-2012-110209. Published by IOS Press online ahead of issue.

Related Stories

Newly discovered cell mechanism uses amplified nitric oxide to fight C. diff

August 21, 2011
Groundbreaking research encompassing Case Western Reserve University School of Medicine and University Hospitals Case Medical Center, has uncovered a natural defense mechanism that is capable of inactivating the toxin that ...

Hormone improves long-term recovery from stroke

May 16, 2011
Scientists at the Sahlgrenska Academy have discovered an explanation of how stroke patients can achieve better recovery. A hormone that is associated with the growth hormone system has proved to benefit recovery during the ...

Improved recovery of motor function after stroke

April 19, 2011
After the acute treatment window closes, the only effective treatment for stroke is physical/occupational therapy. Now scientists from Children's Hospital Boston report a two-pronged molecular therapy that leads to significant ...

Modifying scar tissue can potentially improve outcome in chronic stroke

May 21, 2012
New research from the Buck Institute for Research on Aging shows that modifying the scar tissue that develops following a stroke is a promising avenue for future treatments. The need for therapeutics for chronic stroke is ...

Recommended for you

Little understood cell helps mice see color

December 14, 2017
Researchers at the University of Colorado Anschutz Medical Campus have discovered that color vision in mice is far more complex than originally thought, opening the door to experiments that could potentially lead to new treatments ...

Scientists chart how brain signals connect to neurons

December 14, 2017
Scientists at Johns Hopkins have used supercomputers to create an atomic scale map that tracks how the signaling chemical glutamate binds to a neuron in the brain. The findings, say the scientists, shed light on the dynamic ...

Journaling inspires altruism through an attitude of gratitude

December 14, 2017
Gratitude does more than help maintain good health. New research at the University of Oregon finds that regularly noting feelings of gratitude in a journal leads to increased altruism.

Activating MSc glutamatergic neurons found to cause mice to eat less

December 13, 2017
(Medical Xpress)—A trio of researchers working at the State University of New York has found that artificially stimulating neurons that exist in the medial septal complex in mouse brains caused test mice to eat less. In ...

Gene mutation causes low sensitivity to pain

December 13, 2017
A UCL-led research team has identified a rare mutation that causes one family to have unusually low sensitivity to pain.

Scientists discover blood sample detection method for multiple sclerosis

December 13, 2017
A method for quickly detecting signs of multiple sclerosis has been developed by a University of Huddersfield research team.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.