'Benign' malaria key driver of human evolution in Asia-Pacific

September 4, 2012

The malaria species rampant in the Asia-Pacific region has been a significant driver of evolution of the human genome, a new study has shown. An international team of researchers has shown that Plasmodium vivax malaria, the most prevalent malaria species in the Asia-Pacific, is a significant cause of genetic evolution that provides protection against malaria.

Their finding challenges the widely-accepted theory that Plasmodium falciparum, which causes the most lethal form of , is the only capable of driving genome evolution in humans. The study was published today in the journal .

Professor Ivo Mueller from the Walter and Eliza Hall Institute and Barcelona Centre for International Health Research (CRESIB) led the study, with colleagues from the Papua New Guinea Institute of Medical Research, Centre of Global Health and Diseases, US, and the University of Western Australia.

Malaria is a devastating that kills up to one million people a year. It is a major cause of poverty and a barrier to economic development. Approximately half of the world's population is at risk of .

"Humans and malaria parasites have been co-evolving for thousands of years," Professor Mueller said. "Malaria has been a major force in the evolution of the human genome, with gene mutations that provide humans with some protection against the disease being preserved through natural selection because they aid in survival."

Professor Mueller said the study has challenged the perception that P. falciparum malaria is the only malaria species that affects evolution. "It has long been assumed that , the species that causes the most severe disease and most deaths from malaria, is the most important driver of this gene selection in humans," Professor Mueller said. "Our results suggest that P. vivax malaria, though until recently widely considered to be a 'benign' form of malaria, actually causes severe enough disease to provide evolutionary selection pressures in the Asia-Pacific."

Professor Mueller said that the research team was interested in whether P. vivax malaria might be the cause of the unusually high rates of Southeast Asian ovalocytosis (SAO), a hereditary red blood cell disorder, in the Asia-Pacific region. "SAO occurs in approximately 10 to 15 per cent of the population in parts of the South West Pacific and is caused by a hereditary mutation in a single copy of a gene that makes a red blood cell membrane protein. This is almost an absurdly high frequency when you consider that inheriting two copies of the mutation is invariably fatal, so we figured it must confer a strong advantage to the carriers," he said.

The research team looked at the incidence of P. vivax and P. falciparum infections in three studies that included a total of 1975 children in aged 0-14 years. "We found that SAO-positive children were significantly protected against P. vivax infection, with 46 per cent reduction of clinical disease in infants with little or no immunity, and 52-55 per cent reduction in the risk of infection in older children. We also saw a significant decrease in parasite numbers in infants and older children, which is linked to a decrease in risk of clinical disease," Professor Mueller said.

The finding could have dramatic implications for future malaria vaccine design and development, Professor Mueller said. "Studying the mechanisms that cause SAO-positive people to be protected against P. vivax malaria could help us to better understand the mechanics of infection and help us to identify better targets for a malaria vaccine," he said.

Explore further: Combination drug treatment can cut malaria by 30 percent

Related Stories

Combination drug treatment can cut malaria by 30 percent

April 2, 2012
Malaria infections among infants can be cut by up to 30 per cent when antimalarial drugs are given intermittently over a 12 month period, a three-year clinical trial in Papua New Guinea has shown.

New technology improves malaria control and vaccine development

June 5, 2012
A new technique that accurately determines the risk of infants in endemic countries developing clinical malaria could provide a valuable tool for evaluating new malaria prevention strategies and vaccines.

Improving human immunity to malaria

August 1, 2012
The deadliest form of malaria is caused the protozoan Plasmodium falciparum. During its life-cycle in human blood, the parasite P. falciparum expresses unique proteins on the surface on infected blood cells.

Sequencing of malaria genomes reveals challenges, opportunities in battle against parasite

August 5, 2012
Genetic variability revealed in malaria genomes newly sequenced by two multi-national research teams points to new challenges in efforts to eradicate the parasite, but also offers a clearer and more detailed picture of its ...

Monkeys provide reservoir for human malaria in South-east Asia

April 7, 2011
Monkeys infected with an emerging malaria strain are providing a reservoir for human disease in South-east Asia, according to research published today. The Wellcome Trust-funded study confirms that the species has not yet ...

Recommended for you

Make way for hemoglobin

August 18, 2017
Every cell in the body, whether skin or muscle or brain, starts out as a generic cell that acquires its unique characteristics after undergoing a process of specialization. Nowhere is this process more dramatic than it is ...

Two-step process leads to cell immortalization and cancer

August 17, 2017
A mutation that helps make cells immortal is critical to the development of a tumor, but new research at the University of California, Berkeley suggests that becoming immortal is a more complicated process than originally ...

Female mouse embryos actively remove male reproductive systems

August 17, 2017
A protein called COUP-TFII determines whether a mouse embryo develops a male reproductive tract, according to researchers at the National Institutes of Health and their colleagues at Baylor College of Medicine, Houston. The ...

New Pathology Atlas maps genes in cancer to accelerate progress in personalized medicine

August 17, 2017
A new Pathology Atlas is launched today with an analysis of all human genes in all major cancers showing the consequence of their corresponding protein levels for overall patient survival. The difference in expression patterns ...

New technique overcomes genetic cause of infertility

August 17, 2017
Scientists have created healthy offspring from genetically infertile male mice, offering a potential new approach to tackling a common genetic cause of human infertility.

Inhibiting a protein found to reduce progression of Alzheimer's and ALS in mice

August 17, 2017
(Medical Xpress)—A team of researchers with Genetech Inc. and universities in Hamburg and San Francisco has found that inhibiting the creation of a protein leads to a reduction in the progression of Alzheimer's disease ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.