Researchers make breakthrough on immune system and brain tumors

September 27, 2012

In what could be a breakthrough in the treatment of deadly brain tumors, a team of researchers from Barrow Neurological Institute and Arizona State University has discovered that the immune system reacts differently to different types of brain tissue, shedding light on why cancerous brain tumors are so difficult to treat.

The large, two-part study, led by Barrow research fellow Sergiy Kushchayev, MD under the guidance of Dr. Mark Preul, Director of Neurosurgery Research, was published in the Sept. 14 issue of Cancer Management and Research. (Monocyte galactose/N-acetylgalactosamine-specific C-type lectin receptor stimulant immunotherapy of an experimental glioma.) The study explores the effects of immunotherapy on malignant gliomas, cancerous that typically have a .

What the researchers discovered was that immune cells of the brain and of the blood exhibit massive rearrangements when interacting with a under treatment. Essentially, the study demonstrates that the complex immune system reacts differently in different brain tissues and different regions of the brain, including tumors.

"This is the first time that researchers have conducted a regional tissue study of the brain and a malignant glioma to show that these do not aggregate or behave in the same way in their respective areas of the brain," says Dr. Preul. "This means that effective treatment in one area of the brain may not be effective in another area. In fact, it could even cause other regions of the tumor to become worse."

The results of the study provide important insight into why clinical trials involving immunotherapies on glioma patients may not be working.

Explore further: Minimizing side effects from chemoradiation could help brain cancer patients live longer

Related Stories

Minimizing side effects from chemoradiation could help brain cancer patients live longer

April 19, 2011
Minimizing neurological side effects in patients with high-grade glioma from chemoradiation may result in improved patient survival, a new study from radiation oncologists at the Kimmel Cancer Center at Jefferson suggests. ...

Recommended for you

CAR-T immunotherapy may help blood cancer patients who don't respond to standard treatments

October 20, 2017
Siteman Cancer Center at Barnes-Jewish Hospital and Washington University School of Medicine in St. Louis is one of the first centers nationwide to offer a new immunotherapy that targets certain blood cancers. Newly approved ...

Researchers pinpoint causes for spike in breast cancer genetic testing

October 20, 2017
A sharp rise in the number of women seeking BRCA genetic testing to evaluate their risk of developing breast cancer was driven by multiple factors, including celebrity endorsement, according to researchers at the University ...

Study shows how nerves drive prostate cancer

October 19, 2017
In a study in today's issue of Science, researchers at Albert Einstein College of Medicine, part of Montefiore Medicine, report that certain nerves sustain prostate cancer growth by triggering a switch that causes tumor vessels ...

Gene circuit switches on inside cancer cells, triggers immune attack

October 19, 2017
Researchers at MIT have developed a synthetic gene circuit that triggers the body's immune system to attack cancers when it detects signs of the disease.

One to 10 mutations are needed to drive cancer, scientists find

October 19, 2017
For the first time, scientists have provided unbiased estimates of the number of mutations needed for cancers to develop, in a study of more than 7,500 tumours across 29 cancer types. Researchers from the Wellcome Trust Sanger ...

Researchers target undruggable cancers

October 19, 2017
A new approach to targeting key cancer-linked proteins, thought to be 'undruggable," has been discovered through an alliance between industry and academia.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.