Breast cancer risk linked to early-life diet and metabolic syndrome

September 17, 2012, UC Davis

Striking new evidence suggesting that diet and related factors early in life can boost the risk for breast cancer—totally independent of the body's production of the hormone estrogen—has been uncovered by a team of researchers at the University of California, Davis.

The findings provide new insights into the processes that regulate normal breast development, which can impact the risk of developing breast cancer later in life. The study will be published Sept. 17 in the early edition of the .

"It's long been assumed that circulating estrogens from the ovaries, which underlie normal female , were crucial for the onset of breast growth and development," said Russ Hovey, a UC Davis associate professor of animal science and senior author on the study.

"Our findings, however, suggest that diet and shifts in body metabolism that parallel changes seen during obesity and Type 2 diabetes can also stimulate breast growth entirely independent of estrogen's effects," he said.

The studies with mice used a diet supplemented with a form of the fatty acid known as 10, 12 conjugated linoleic acid or 10, 12 CLA, which mimics specific aspects of a broader metabolic syndrome.

In humans, this syndrome is linked to a broad array of changes associated with obesity that can increase the risk of and cardiovascular disease.

The 10, 12 CLA was added to the diet of the test group of mice because it is known to disrupt normal metabolic processes. In this study, the supplement stimulated the mammary ducts to grow, despite the fact that the mice lacked estrogen.

The researchers demonstrated that the diet-induced breast development also increased the formation of in some of the mice.

They ruled out a role for estrogen as the possible cause for how diet increased growth of the breast tissues by giving the supplement to male mice and to in which the function of estrogen was blocked.

The research team also discovered that various mouse strains responded differently to the dietary supplement despite similar metabolic changes, suggesting that there may be a genetic component for how diet and related metabolic changes affect risk in different populations, Hovey said.

He noted that results from the study would likely have significant implications for better understanding human breast development before puberty and after menopause, when estrogens are less present.

"The findings of this study are particularly important when we superimpose them on data showing that girls are experiencing at earlier ages, coincident with a growing epidemic of childhood obesity," Hovey said.

Explore further: Social isolation, stress-induced obesity increases breast cancer risk in mice

Related Stories

Social isolation, stress-induced obesity increases breast cancer risk in mice

April 4, 2011
Stress from social isolation, combined with a high-fat diet, increases levels of a brain neurotransmitter – neuropeptide Y, or NPY – in mice that then promotes obesity, insulin resistance, and breast cancer risk, ...

Team identifies new breast cancer tumor suppressor and how it works

June 27, 2011
Researchers have identified a protein long known to regulate gene expression as a potent suppressor of breast cancer growth. Their study, in the journal Oncogene, is the first to demonstrate how this protein, known as Runx3, ...

Elevated hormone levels add up to increased breast cancer risk

October 21, 2011
Post-menopausal women with high levels of hormones such as estrogen or testosterone are known to have a higher risk of breast cancer. New research published in BioMed Central's open access journal Breast Cancer Research looked ...

Obesity raises breast cancer survivors' risk of dying of the cancer

June 4, 2011
Women with a healthy body weight before and after diagnosis of breast cancer are more likely to survive the disease long term, a new study finds.

Recommended for you

Researchers discover novel mechanism linking changes in mitochondria to cancer cell death

February 20, 2018
To stop the spread of cancer, cancer cells must die. Unfortunately, many types of cancer cells seem to use innate mechanisms that block cancer cell death, therefore allowing the cancer to metastasize. While seeking to further ...

Stem cell vaccine immunizes lab mice against multiple cancers

February 15, 2018
Stanford University researchers report that injecting mice with inactivated induced pluripotent stem cells (iPSCs) launched a strong immune response against breast, lung, and skin cancers. The vaccine also prevented relapses ...

Induced pluripotent stem cells could serve as cancer vaccine, researchers say

February 15, 2018
Induced pluripotent stem cells, or iPS cells, are a keystone of regenerative medicine. Outside the body, they can be coaxed to become many different types of cells and tissues that can help repair damage due to trauma or ...

Team paves the way to the use of immunotherapy to treat aggressive colon tumors

February 15, 2018
In a short space of time, immunotherapy against cancer cells has become a powerful approach to treat cancers such as melanoma and lung cancer. However, to date, most colon tumours appeared to be unresponsive to this kind ...

Can our genes help predict how women respond to ovarian cancer treatment?

February 15, 2018
Research has identified gene variants that play a significant role in how women with ovarian cancer process chemotherapy.

First comparison of common breast cancer tests finds varied accuracy of predictions

February 15, 2018
Commercially-available prognostic breast cancer tests show significant variation in their abilities to predict disease recurrence, according to a study led by Queen Mary University of London of nearly 800 postmenopausal women.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.