Distinct chromatin patterns linked to heart development

September 17, 2012
Distinct chromatin patterns linked to heart development
Distinct chromatin patterns accompany the development of heart cells from embryonic cells, providing a blueprint that could help identify the causes of congenital heart disease, according to a study published online Sept. 13 in Cell.

(HealthDay)—Distinct chromatin patterns accompany the development of heart cells from embryonic cells, providing a blueprint that could help identify the causes of congenital heart disease, according to a study published online Sept. 13 in Cell.

Joseph A. Wamstad, Ph.D., from the Massachusetts Institute of Technology in Cambridge, and colleagues analyzed the epigenetic changes that occur during the directed differentiation of mouse into cardiomyocytes and used chromatin marks to identify patterns associated with stage-specific development.

The researchers found that distinct chromatin patterns were associated with stage-specific gene expression and could predict sets of functionally related genes, some of which were associated with human disease. In addition, a novel preactivation chromatin pattern was found at the promoters of specific cardiac genes involved in cardiac development and function. They also identified stage-specific distal enhancers that predicted novel transcriptional regulatory networks during differentiation as well as potential new regulators of cardiac development.

"Together, these findings form a basis for understanding developmentally regulated chromatin transitions during lineage commitment and the molecular etiology of ," Wamstad and colleagues conclude.

One author is a scientific founder of iPieirian and is on the scientific advisory boards of iPieirian and RegeneRx Pharmaceuticals.

Explore further: Fibroblasts reprogrammed into functioning heart cells in mice

More information: Abstract
Full Text (subscription or payment may be required)

Related Stories

Fibroblasts reprogrammed into functioning heart cells in mice

April 23, 2012
(HealthDay) -- Cells that normally form scar tissue after a heart attack can be reprogrammed into functional heart cells in mice, according to an experimental study published online April 18 in Nature.

Recommended for you

Forces from fluid in the developing lung play an essential role in organ development

January 23, 2018
It is a marvel of nature: during gestation, multiple tissue types cooperate in building the elegantly functional structures of organs, from the brain's folds to the heart's multiple chambers. A recent study by Princeton researchers ...

More surprises about blood development—and a possible lead for making lymphocytes

January 22, 2018
Hematopoietic stem cells (HSCs) have long been regarded as the granddaddy of all blood cells. After we are born, these multipotent cells give rise to all our cell lineages: lymphoid, myeloid and erythroid cells. Hematologists ...

How metal scaffolds enhance the bone healing process

January 22, 2018
A new study shows how mechanically optimized constructs known as titanium-mesh scaffolds can optimize bone regeneration. The induction of bone regeneration is of importance when treating large bone defects. As demonstrated ...

Researchers illustrate how muscle growth inhibitor is activated, could aid in treating ALS

January 19, 2018
Researchers at the University of Cincinnati (UC) College of Medicine are part of an international team that has identified how the inactive or latent form of GDF8, a signaling protein also known as myostatin responsible for ...

Bioengineered soft microfibers improve T-cell production

January 18, 2018
T cells play a key role in the body's immune response against pathogens. As a new class of therapeutic approaches, T cells are being harnessed to fight cancer, promising more precise, longer-lasting mitigation than traditional, ...

Weight flux alters molecular profile, study finds

January 17, 2018
The human body undergoes dramatic changes during even short periods of weight gain and loss, according to a study led by researchers at the Stanford University School of Medicine.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.