Can gene therapy cure fatal diseases in children?

September 5, 2012

In order for the body to function, a balance is necessary between the cells that build up the bones in our skeletons and the cells that break them down. In the disease malignant infantile osteopetrosis, MIOP, the cells that break down the bone tissue do not function as they should, resulting in the skeleton not having sufficient cavities for bone-marrow and nerves.

"Optic and are compressed, causing blindness and deafness in these children. Finally the bone marrow ceases to function and, without treatment, the child dies of and infections", explains Carmen Flores Bjurström. She has just completed a thesis which presents some of the research at the division for and Gene Therapy in Lund.

The researchers' work focuses on finding alternatives to the only treatment currently available against MIOP, namely a bone-marrow transplant. This treatment can be effective, but it is both risky and dependent on finding a suitable donor.

Gene therapy requires no donor, as are taken from the patients themselves. Once the cells' non-functioning gene has been replaced with a healthy copy of itself, the stem cells are put back into the patient.

Great hopes have been placed on gene therapy as a treatment method but the work has proven to be more difficult than expected. The method is used today for certain immunodeficiency diseases, and has also been applied to a called thalassemia.

"So far, the method is not risk-free. Since it is impossible to control where the introduced gene ends up, there is a certain risk of it ending up in the wrong place and giving rise to leukaemia. This is why gene therapy is only used for serious diseases for which there is no good treatment", says Carmen Flores Bjurström.

The Lund researchers have conducted experiments with in both patient cells and laboratory animals. The next step is to conduct trials on patients. The trials will probably take place at the hospital in Ulm, Germany, which currently treats the majority of children in Europe suffering from MIOP.

MIOP is a rare disease: in Sweden a child is born with the condition approximately once every three years. Worldwide, the incidence of the disease is one case for every 300 000 births. It is, however, more common in Costa Rica where 3-4 children per 100 000 births have the disease.

"But there are several other genetic mutations that lead to other osteopetrosis diseases. If we manage to treat MIOP, it may become possible to treat these other conditions as well", hopes Carmen Flores Bjurström along with her supervisor, Professor Johan Richter.

Explore further: Gene therapy can correct forms of severe combined immunodeficiency

More information: The thesis is entitled "Targeting the hematopoietic stem cell to correct osteopetrosis" and it will be presented on 6 September.

Related Stories

Gene therapy can correct forms of severe combined immunodeficiency

May 24, 2012
Severe combined immunodeficiency is defect in the immune system that results in a loss of the adaptive immune cells known as B cells and T cells. Mutations in several different genes can lead to the development of severe ...

New gene therapy technique on iPS cells holds promise in treating immune system disease

April 28, 2011
Researchers have developed an effective technique that uses gene therapy on stem cells to correct chronic granulomatous disease (CGD) in cell culture, which could eventually serve as a treatment for this rare, inherited immune ...

Combination treatment in mice shows promise for fatal neurological disorder in kids

March 15, 2012
Infants with Batten disease, a rare but fatal neurological disorder, appear healthy at birth. But within a few short years, the illness takes a heavy toll, leaving children blind, speechless and paralyzed. Most die by age ...

Correcting sickle cell disease with stem cells

September 28, 2011
(Medical Xpress) -- Using a patient’s own stem cells, researchers at Johns Hopkins have corrected the genetic alteration that causes sickle cell disease (SCD), a painful, disabling inherited blood disorder that affects ...

Recommended for you

New approach to studying chromosomes' centers may reveal link to Down syndrome and more

November 20, 2017
Some scientists call it the "final frontier" of our DNA—even though it lies at the center of every X-shaped chromosome in nearly every one of our cells.

Genome editing enhances T-cells for cancer immunotherapy

November 20, 2017
Researchers at Cardiff University have found a way to boost the cancer-destroying ability of the immune system's T-cells, offering new hope in the fight against a wide range of cancers.

A math concept from the engineering world points to a way of making massive transcriptome studies more efficient

November 17, 2017
To most people, data compression refers to shrinking existing data—say from a song or picture's raw digital recording—by removing some data, but not so much as to render it unrecognizable (think MP3 or JPEG files). Now, ...

Genetic mutation in extended Amish family in Indiana protects against aging and increases longevity (Update)

November 15, 2017
The first genetic mutation that appears to protect against multiple aspects of biological aging in humans has been discovered in an extended family of Old Order Amish living in the vicinity of Berne, Indiana, report Northwestern ...

US scientists try first gene editing in the body

November 15, 2017
Scientists for the first time have tried editing a gene inside the body in a bold attempt to permanently change a person's DNA to try to cure a disease.

Genetic variant prompts cells to store fat, fueling obesity

November 13, 2017
Obesity is often attributed to a simple equation: People are eating too much and exercising too little. But evidence is growing that at least some of the weight gain that plagues modern humans is predetermined. New research ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.