Research suggests shared genetic link in psychiatric and movement disorders

September 27, 2012

Fewer than 100 people in the world are known to be affected by a movement disorder called rapid-onset dystonia-parkinsonism (RDP), but its symptoms are life-changing. Seemingly normal young people are suddenly and dramatically unable to control movement of their arms or legs and have trouble speaking or swallowing. A normal life is nearly impossible.

RDP is caused by a genetic mutation (ATP1A3) that often runs in families. Now Wake Forest Baptist Medical Center researchers believe that same might also be associated with , such as anxiety, and substance abuse/dependence.

Allison Brashear, M.D., chair of neurology at Wake Forest Baptist, and the lead investigator in this $2.5 million, four-year study funded by the National Institute of Neurological Disorders and Stroke (NINDS), said this is one of the few studies to look at this rare condition that has no known treatment. "RDP often occurs suddenly after a stressful episode, such as running a marathon or childbirth," said Brashear. "Patients become severely disabled over hours to days and do not recover."

Brashear and nine other Wake Forest Baptist scientists, as well as colleagues from Harvard Medical School and Mount Sinai School of Medicine, enrolled 56 individuals for this study. Twenty-three of the RDP patients were related, three RDP patients were unrelated.

Of the 29 participants with the genetic mutation, 26 had dystonia and three were carriers, but without the motor symptoms; the remaining 27 participants without the mutation, were enrolled as the .

Following standard physical examination and behavioral assessment, Brashear's team found that individuals with the mutation but without the motor symptoms did not report any history of psychiatric disorder, while those with dystonia symptoms reported anxiety (48 percent; control 41percent), mood (50 percent; control 22 percent), psychotic (19 percent; control 0 percent) and substance abuse/dependence (38 percent; control 27 percent).

Researchers concluded that ATP1A3 mutations cause a wide spectrum of motor and nonmotor symptoms and that psychotic symptoms tended to develop before or simultaneous to the beginning of motor dysfunction. Further, the team believes the findings suggest may be another expression of the genetic mutation. Brashear said there are also clinical implications as a result of this study and suggested that those who deal with patients with psychosis, particularly in families with a history of dystonia-parkinsonism, consider the genetic mutation as a possible contributor to the mental illness.

Explore further: Scientists identify abnormal disease pathway in dystonia

Related Stories

Scientists identify abnormal disease pathway in dystonia

April 12, 2011
Scientists tried creating a laboratory model of idiopathic torsion dystonia, a neurological condition marked by uncontrolled movements, particularly twisting and abnormal postures. But the genetic defect that causes dystonia ...

Opioid abuse linked to mood and anxiety disorders

December 13, 2011
Individuals suffering from mood and anxiety disorders such as bipolar, panic disorder and major depressive disorder may be more likely to abuse opioids, according to a new study led by researchers from the Johns Hopkins Bloomberg ...

Recommended for you

Forgotten strands of DNA initiate the development of immune cells

September 21, 2017
Intricate human physiological features such as the immune system require exquisite formation and timing to develop properly. Genetic elements must be activated at just the right moment, across vast distances of genomic space.

Study reveals an ancient Achilles heel in the human genome

September 21, 2017
In a major study published today, researchers at deCODE genetics use whole-genome data from 14,000 people from across the population of Iceland, including 1500 sets of parents and children, to provide the most detailed portrait ...

Genome editing reveals role of gene important for human embryo development

September 20, 2017
Researchers have used genome editing technology to reveal the role of a key gene in human embryos in the first few days of development. This is the first time that genome editing has been used to study gene function in human ...

A piece of the puzzle: Eight autism-related mutations in one gene

September 19, 2017
Scientists have identified a hotspot for autism-related mutations in a single gene.

Scientists identify key regulator of male fertility

September 19, 2017
When it comes to male reproductive fertility, timing is everything. Now scientists are finding new details on how disruption of this timing may contribute to male infertility or congenital illness.

New assay leads to step toward gene therapy for deaf patients

September 18, 2017
Scientists at Oregon State University have taken an important step toward gene therapy for deaf patients by developing a way to better study a large protein essential for hearing and finding a truncated version of it.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.