'Humanized' mice enable malaria research breakthrough

September 10, 2012
This image shows a maturing Plasmodium falciparum liver stage parasite in the liver of the human liver-chimeric FRGTM KO. Membranes of the developing merozoites are shown in red, DNA in blue, and the human hepatocytes within the liver-chimeric FRGTM KO mouse are shown in green. Credit: Seattle Biomedical Research Institute

A novel human liver-chimeric mouse model developed at Oregon Health & Science University and Yecuris Corporation has made possible a research breakthrough at Seattle Biomedical Research Institute that will greatly accelerate studies of the most lethal forms of human malaria.

The study findings are published online in the Journal of Clinical Investigation. Study photos were selected to appear in "Scientific Show Stoppers" on the JCI blog.

Plasmodium falciparum, one of two human-specific malaria parasites, is a global health crisis, causing more than 216 million new infections annually and resulting in an estimated 655,000 deaths, according to the World Health Organization.

Sporozoites, the infectious form of the parasite, are spread to people through the bites of infected mosquitos and multiply in the human liver during the initial stages of infection. There, they undergo liver stage development, culminating in the formation and release of tens of thousands of merozoites, the parasitic phase of development that infects red blood cells.

Until now, there have been few data on human malaria liver stage biology due to the lack of a viable small animal model and because liver stage P. falciparum does not grow well in a dish. Consequently, most research and therapeutics to date have targeted the human blood stage of P. falciparum's development because it replicates well in culture.

This image shows a section of a mature Plasmodium falciparum liver stage parasite in the liver of the human liver-chimeric FRGTM KO mouse. Individual merozoites are surrounded by a plasma membrane (red), and contain a single nucleus (blue) and a single apicoplast (green). Credit: Seattle Biomedical Research Institute

The liver-to-blood stage of P. falciparum is the focus of this research because the parasite is virtually harmless, causing no disease symptoms, prior to its transition to the blood stage.

In this study, researchers at Seattle Biomedical Research Institute, Yecuris Corporation, Oregon Health & Science University and The Rockefeller University have demonstrated that a complete liver-to-blood stage infection of P. falciparum is possible using a unique immunocompromised engrafted with human liver-chimeric cells.

The mouse model, termed the FRGTM KO mouse, was developed by paper co-author and internationally accomplished stem cell researcher Markus Grompe, M.D., in the Papé Family Pediatric Research Institute, a research arm of Oregon Health & Science University Doernbecher Children's Hospital.

In 2007 the technology was licensed to Yecuris Corporation, a biotechnology company that now produces the model and human hepatocytes on a commercial scale. As a result of this work, the FRGTM KO mouse now will be used to study new drug interventions, parasite attenuation and innate immune responses to P. falciparum liver stage infection.

The scientists also report that through the infection of the FRGTM KO mouse model, they were able to observe a previously unknown expression of proteins in liver stage development in humans that may be exploited for intervention. Equally important, they say, the FRGTM KO mouse could well provide unique opportunities for the study of another severe form of human malaria, Plasmodium vivax.

"These breakthroughs are remarkable and highlight OHSU and Yecuris' contributions to local biotechnology and research breakthroughs globally. The next generation mouse model we're developing will have a human immune system that will allow us to test not just drugs, but vaccines, which has never been done for parasitic diseases," said Grompe, Ray Hickey Chair and Director of the Papé Family Pediatric Research Institute, OHSU Doernbecher Children's Hospital; and professor of pediatrics, and molecular and medical genetics, OHSU School of Medicine.

Grompe founded Yecuris Corporation in 2007 and is a shareholder. John Bial, who joined Yecuris in 2009, is president and chief executive officer.

"The extensive collaborative relationships and risk-taking involved in planning and executing this research is a testament to the tireless dedication of these teams to solving one of the globe's oldest killers. It also highlights how private and public funding can come together effectively to address critical challenges in global health," said Bial.

"This first demonstration of the newly developed dual humanized FRGTM KO system is a good introduction to the kinds of translational medicine benefits that we can expect to see from these technologies. We anticipate that the next frontier for these systems will be as platforms for human vaccine development and validation, which may very likely first be tested in the area of ," Bial explained.

Explore further: Malaria vaccination strategy provides model for superior protection

More information: "Complete Plasmodium falciparum liver stage development in liver-chimeric mice," Journal of Clinical Investigation, 2012.

Related Stories

Malaria vaccination strategy provides model for superior protection

June 15, 2011
Malaria is a devastating disease caused by the Plasmodium parasite which is transmitted to humans by infected mosquitoes. Hundreds of millions of new cases of malaria are reported each year, and there are more than 750,000 ...

Improving human immunity to malaria

August 1, 2012
The deadliest form of malaria is caused the protozoan Plasmodium falciparum. During its life-cycle in human blood, the parasite P. falciparum expresses unique proteins on the surface on infected blood cells.

Recommended for you

Inhibiting a protein found to reduce progression of Alzheimer's and ALS in mice

August 17, 2017
(Medical Xpress)—A team of researchers with Genetech Inc. and universities in Hamburg and San Francisco has found that inhibiting the creation of a protein leads to a reduction in the progression of Alzheimer's disease ...

Are stem cells the link between bacteria and cancer?

August 17, 2017
Gastric carcinoma is one of the most common causes of cancer-related deaths, primarily because most patients present at an advanced stage of the disease. The main cause of this cancer is the bacterium Helicobacter pylori, ...

Using barcodes to trace cell development

August 16, 2017
How do the multiple different cell types in the blood develop? Scientists have been pursuing this question for a long time. According to the classical model, different developmental lines branch out like in a tree. The tree ...

The unexpected role of a well-known gene in creating blood

August 16, 2017
One of the first organ systems to form and function in the embryo is the cardiovascular system: in fact, this developmental process starts so early that scientists still have many unresolved questions on the origin of the ...

Researchers unlock clues to how cells move through the body

August 16, 2017
During its 120-day cycle the circulatory system transports red blood cells and nutrients throughout the human body. This system helps keep the body in balance and fight against infections and diseases by filtering old or ...

Eating habits affect skin's protection against sun

August 15, 2017
Sunbathers may want to avoid midnight snacks before catching some rays.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.