Master gene affects neurons that govern breathing at birth and in adulthood

September 6, 2012

When mice are born lacking the master gene Atoh1, none breathe well and all die in the newborn period. Why and how this occurs could provide new answers about sudden infant death syndrome (SIDS), but the solution has remained elusive until now.

Research led by Baylor College of Medicine and the Jan and Dan Duncan Institute at Texas Children's Hospital demonstrates that when the gene is lacking in a special population of neurons called RTN (retrotrapezoid nucleus), roughly half the young mice die at birth. Those who survive are less likely to respond to excess levels of carbon dioxide as adults. A report of their work appears online in the journal Neuron.

"The death of mice at birth clued us in that Atoh1 must be needed for the function of some neurons critical for neonatal breathing, so we set out to define these neurons," said Dr. Huda Zoghbi, senior author of the report and director of the Neurological Research Institute and a professor of molecular and , neuroscience, neurology and pediatrics at BCM. Zoghbi is also a Howard Hughes Medical Institute investigator.

"We took a genetic approach to find the critical neurons," said Wei-Hsiang Huang, a graduate student in the Program in at BCM who works in Zoghbi's laboratory. With careful studies to "knockout" the activity of the gene in a narrower and narrower area in the brain, they slowly eliminated possible neurons to determine that loss of Atoh1 in the RTN neurons was the source of the problem.

"Discovering that Atoh1 is indeed critical for the RTN neurons to take their right place in the and connect with the breathing center helped us uncover why they are important for neonatal breathing," said Zoghbi.

"This population of neurons resides in the ventral brainstem," said Huang. "When there is a change in the makeup of the blood ( or buildup of carbon dioxide), the RTN neurons sense that and tell the body to change the way it breathes." A defect in these neurons can disrupt this response.

"Without Atoh1 the mice have significant breathing problems because they do not automatically adjust their breathing to decrease carbon dioxide and oxygenate the blood," he said.

It turns out the findings from this mouse study are relevant to human studies.

"A paper just published* reports that developmental abnormalities in the RTN neurons of children with or sudden unexplained intrauterine death may be linked to altered ventilatory response to carbon dioxide", said Huang.

Explore further: Rett protein MeCP2 needed for proper adult neuron function

More information: *Lavezzi, A.M., et al., Developmental alterations of the respiratory human retrotrapezoid nucleus in sudden unexplained fetal and infant death, Auton. Neurosci. (2012), doi:10.1016/j.autneu.2012.06.005

Related Stories

Rett protein MeCP2 needed for proper adult neuron function

June 2, 2011
The protein MeCP2 is porridge to the finicky neuron. Like Goldilocks, the neuron or brain cell needs the protein in just the right amount. Girls born with dysfunctional MeCP2 (methyl-CpG-binding protein 2) develop Rett syndrome, ...

Recommended for you

Researchers create tool to measure, control protein aggregation

October 22, 2017
A common thread ties seemingly unlinked disorders like Alzheimer's disease and type II diabetes together. This thread is known as protein aggregation and happens when proteins clump together. These complexes are a hallmark ...

Want to control your dreams? Here's how

October 19, 2017
New research at the University of Adelaide has found that a specific combination of techniques will increase people's chances of having lucid dreams, in which the dreamer is aware they're dreaming while it's still happening ...

Researchers find shifting relationship between flexibility, modularity in the brain

October 19, 2017
A new study by Rice University researchers takes a step toward what they see as key to the advance of neuroscience: a better understanding of the relationship between the brain's flexibility and its modularity.

Brain training can improve our understanding of speech in noisy places

October 19, 2017
For many people with hearing challenges, trying to follow a conversation in a crowded restaurant or other noisy venue is a major struggle, even with hearing aids. Now researchers reporting in Current Biology on October 19th ...

Investigating the most common genetic contributor to Parkinson's disease

October 19, 2017
LRRK2 gene mutations are the most common genetic cause of Parkinson's disease (PD), but the normal physiological role of this gene in the brain remains unclear. In a paper published in Neuron, Brigham and Women's Hospital ...

New procedure enables cultivation of human brain sections in the petri dish

October 19, 2017
Researchers at the University of Tübingen have become the first to keep human brain tissue alive outside the body for several weeks. The researchers, headed by Dr. Niklas Schwarz, Dr. Henner Koch and Dr. Thomas Wuttke at ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.