Treating ovarian cancer: New pathways through genetics

September 24, 2012

A new discovery that sheds light on the genetic make up of ovarian cancer cells could explain why some women survive longer than others with this deadly disease. A multi-disciplinary team led by the Research Institute of the McGill University Health Centre (RI MUHC), in collaboration with the Lady Davis Institute of the Jewish General Hospital and the University of Montreal Hospital Research Centre, has identified genetic patterns in ovarian cancer tumours that help to differentiate patients based on the length of their survival after initial surgery. The study was published in the journal PLOS ONE.

"We discovered genetic differences in the tumours from ovarian cancer patients that relate to their short-term and overall response to standard treatment," explained Dr. Patricia Tonin, the study's lead author and a cancer researcher at the RI MUHC and Associate Professor of the Department of Medicine at McGill University. "Using these genetic 'tools' to examine the tumours removed in the initial surgery, we may be able to offer alternative therapeutic options to to improve their outcome."

Each year 2,000 new cases of ovarian cancer are reported in Canada, and in 75 per cent of these cases the women die less than five years after their diagnosis. This study focused on the genetic analysis of high grade serous ovarian carcinomas (HGSC) in women from Quebec – the deadliest type of which accounts for 90 per cent of deaths.

Almost all women with HGSC have mutations in the gene TP53, which is responsible for making the p53 protein. This gene is known as the "guardian of the genome" because of its role in regulating cell division and thus preventing cancer. Scientists already knew there were two different types of tumours, some with TP53 mutations that produce a mutant p53 protein and others without.

By uncovering the existence of genetic differences between the two types of HGSCs, the study reinforces the idea that there are biological differences in these cancers that can be related to the nature of the TP53 mutation and differences in genetic markers. The research team also confirmed that patient survival was longer in cases with the mutant p53 protein, compared to those that without the mutant protein.

"Biology is showing us which direction to take," enthused Dr. Tonin. "This unique finding paves the way for identifying the pathways involved in cancer progression, leading to the development of alternative therapies and therefore helping to reduce morbidity and mortality in women fighting the disease".

Explore further: Genetic marker may help predict risk of ovarian cancer

More information: www.plosone.org/article/info%3 … journal.pone.0045484

Related Stories

Genetic marker may help predict risk of ovarian cancer

May 28, 2012
(Medical Xpress) -- Four of 10 women diagnosed with both ovarian and breast cancer possess a variant of a known-cancer causing gene, a new study published May 25 in the online journal PLoS One confirms.

Olaparib shows promise in treating ovarian cancer, even without BRCA mutations

August 21, 2011
The PARP inhibitor, olaparib, that has shown promise in women with an inherited mutation in their BRCA1 or BRCA2 gene (accounting for about 5-10% of breast and ovarian cancer cases), has, for the first time, been shown to ...

Role of known cancer gene in ovarian cancer investigated

February 14, 2012
The role of a known cancer-causing gene in the development of the most lethal type of ovarian cancer is being investigated by researchers from the Walter and Eliza Hall Institute after they were awarded a Cure Cancer Australia ...

Evolving ovarian cancer cells 'dodge' treatment with chemotherapy

December 20, 2011
(Medical Xpress) -- Cancer Research UK scientists have discovered that the commonest type of ovarian cancer evolves at a startling rate, which may allow cancer cells to ‘dodge’ the current standard treatment, reveals ...

Recommended for you

Breaking the genetic resistance of lung cancer and melanoma

July 25, 2017
Researchers from Monash University and the Memorial Sloan Kettering Cancer Center (MSKCC, New York) have discovered why some cancers – particularly lung cancer and melanoma – are able to quickly develop deadly resistance ...

Anti-cancer chemotherapeutic agent inhibits glioblastoma growth and radiation resistance

July 24, 2017
Glioblastoma is a primary brain tumor with dismal survival rates, even after treatment with surgery, chemotherapy and radiation. A small subpopulation of tumor cells—glioma stem cells—is responsible for glioblastoma's ...

New therapeutic approach for difficult-to-treat subtype of ovarian cancer identified

July 24, 2017
A potential new therapeutic strategy for a difficult-to-treat form of ovarian cancer has been discovered by Wistar scientists. The findings were published online in Nature Cell Biology.

Immune cells the missing ingredient in new bladder cancer treatment

July 24, 2017
New research offers a possible explanation for why a new type of cancer treatment hasn't been working as expected against bladder cancer.

No dye: Cancer patients' gray hair darkened on immune drugs

July 21, 2017
Cancer patients' gray hair unexpectedly turned youthfully dark while taking novel drugs, and it has doctors scratching their heads.

Shooting the achilles heel of nervous system cancers

July 20, 2017
Virtually all cancer treatments used today also damage normal cells, causing the toxic side effects associated with cancer treatment. A cooperative research team led by researchers at Dartmouth's Norris Cotton Cancer Center ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.