Researchers target physiological factors that lead to asthma attack

September 17, 2012

A new study that identifies ways to reduce the factors that lead to an asthma attack gives hope to asthma sufferers. A UCSF researcher and his colleagues believe they have found a way to help asthma sufferers by impeding the two most significant biological responses that lead to an asthma attack.

Asthma, a that causes shortness of breath, coughing and chest discomfort, results from changes in the airways that lead to the lungs. It affects 18.7 million adults and 7.0 million children in the US, according to the .

In a paper published Monday in the (PNAS), researchers from UCSF, Johns Hopkins University and Duke University demonstrate that a specific calcium-activated holds valuable clues to reducing two biological processes that contribute to the severity of asthma. These channels regulate airway secretions and contraction, the two major factors that lead to an .

"Maybe if we could inhibit both of these processes by blocking this one channel, then we could affect the two symptoms of asthma," said senior author Jason Rock, PhD, assistant professor at the UCSF Department of Anatomy.

Normally humans have few mucus-producing cells but asthma sufferers have an elevated number of these cells in the lining of the tubes that lead to the lungs. Asthmatics also have an abnormal amount of smooth muscle surrounding the airway tubes. Even the slightest stimulus can cause these to contract.

"The overabundance of mucus plugging the airways combined with hyper-contractility of the smooth muscle – when the tubes get really small – make it difficult to move air in or out," Rock said. "A lot of people equate that with breathing through a straw."

Rock and his colleagues focused on a calcium-activated chloride channel called TMEM16A. This channel secretes in response to rises in intracellular calcium. It regulates a significant number of biological processes such as neuron firing, gastrointestinal activity and the secretion of sweat and tears.

The researchers wanted to prove that the channel was present in asthma. They studied human lung samples and looked for the mRNA (messenger RNA which carries information from the DNA to the sites of protein synthesis), and compared protein levels in asthmatic and non-asthmatic patients.

"We found that the level of this channel was increased in the mucus producing cells of asthmatics compared to non-asthmatics," Rock said. "And we also validated this in several models of asthma, including mouse models. That was step one."

Step two consisted of a screen to identify chemicals that inhibit the activity of TMEM16A. The authors identified three chemicals that inhibit the channel.

"We tested the ability of these chemicals to inhibit TMEM16A and other channels, and we found that they specifically block TMEM16A," Rock said. "It is great that we came across these molecules that were unknown previously since we can now try to get into clinical trials to benefit patients."

Then, the authors simulated asthma in a dish and blocked the channel to observe whether it affected mucus production. "Mucus produced by these cells wasn't secreted as efficiently," Rock said. "We also studied airway smooth muscles of human patients who had given their organs to science, and we could see that blocking TMEM16A inhibited their contraction response as well."

Rock is in the pre-clinical phase to test the safety and effectiveness of the blockers in animal studies. If that goes well, Phase One of clinical trials can begin.

"At present, I am optimistic," Rock said. "This could be a major advance to help sufferers."

Explore further: Vitamin D deficiency linked with airway changes in children with severe asthma

Related Stories

Vitamin D deficiency linked with airway changes in children with severe asthma

September 22, 2011
Children with severe therapy-resistant asthma (STRA) may have poorer lung function and worse symptoms compared to children with moderate asthma, due to lower levels of vitamin D in their blood, according to researchers in ...

Researchers find molecular pathway that leads to inflammation in asthma

August 8, 2011
Researchers at the University of Pittsburgh School of Medicine have identified a molecular pathway that helps explain how an enzyme elevated in asthma patients can lead to increased mucus production and inflammation that ...

Recommended for you

New insights into protein's role in inflammatory response

July 28, 2017
A protein called POP2 inhibits a key inflammatory pathway, calming the body's inflammatory response before it can become destructive, Northwestern Medicine scientists have demonstrated in mouse models.

Targeting 'broken' metabolism in immune cells reduces inflammatory disease

July 12, 2017
The team, led by researchers at Imperial College London, Queen Mary University of London and Ergon Pharmaceuticals, believes the approach could offer new hope in the treatment of inflammatory conditions like arthritis, autoimmune ...

A perturbed skin microbiome can be 'contagious' and promote inflammation, study finds

June 29, 2017
Even in healthy individuals, the skin plays host to a menagerie of bacteria, fungi and viruses. Growing scientific evidence suggests that this lively community, collectively known as the skin microbiome, serves an important ...

Inflammatory bowel disease: Scientists zoom in on genetic culprits

June 28, 2017
Scientists have closed in on specific genes responsible for Inflammatory Bowel Disease (IBD) from a list of over 600 genes that were suspects for the disease. The team from the Wellcome Trust Sanger Institute and their collaborators ...

Trials show unique stem cells a potential asthma treatment

June 28, 2017
A study led by scientists at Monash University has shown that a new therapy developed through stem cell technology holds promise as a treatment for chronic asthma.

Researchers find piece in inflammatory disease puzzle

May 23, 2017
Inflammation is the process by which the body responds to injury or infection but when this process becomes out of control it can cause disease. Monash Biomedicine Discovery Institute (BDI) researchers, in collaboration with ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.