Prenatal damage from dioxin shown to involve microRNAs

September 17, 2012

(Medical Xpress)—Research carried out at the University of South Carolina has identified novel mechanisms through which dioxin, a well-known environmental contaminant, can alter physiological functions, according to a study published online in the journal PLOS ONE.

The research team, which included Narendra Singh, Mitzi Nagarkatti and Prakash Nagarkatti of the USC School of Medicine, demonstrated that exposure to dioxin (TCDD) during pregnancy in an experimental mouse model can cause significant toxicity to the fetus, and specifically to the organs that produce the that fight infections. They found that dioxin alters small molecules called microRNAs, which can affect the expression of a large number of genes.

The study examined over 608 microRNAs, and 78 of these were significantly altered following exposure to dioxin. On the basis of the pattern of changes in these molecules, the team was also able to predict that dioxin can alter several genes that regulate cancer. Many other physiological systems were also affected, including those involved in reproductive, gastrointestinal, hematological, inflammation, renal and urological diseases as well as genetic, endocrine and developmental disorders.

Dioxin is a highly toxic chemical produced as a byproduct of industrial processes, such as the manufacture of herbicides or pesticides or the bleaching of paper. Because it degrades slowly in the environment and is soluble in fats, dioxin can bio-accumulate in the food chain and is often found in high concentrations in the milk and fat of animals in contaminated regions.

"Our results lend more credence to the hypothesis that to can have life-long effects," said Mitzi Nagarkatti. "Prenatal damage to the expression of microRNAs in the immune system could well impact the adult immune response."

Explore further: Early results link PTSD, compromised immune systems

More information: www.plosone.org/article/info%3Adoi%2F10.1371%2Fjournal.pone.0045054

Related Stories

Recommended for you

As cells age, the fat content within them shifts

January 19, 2017

As cells age and stop dividing, their fat content changes, along with the way they produce and break down fat and other molecules classified as lipids, according to a new University at Buffalo study.

What causes sleepiness when sickness strikes

January 19, 2017

It's well known that humans and other animals are fatigued and sleepy when sick, but it's a microscopic roundworm that's providing an explanation of how that occurs, according to a study from researchers at the Perelman School ...

Soft robot helps the heart beat

January 18, 2017

Harvard University and Boston Children's Hospital researchers have developed a customizable soft robot that fits around a heart and helps it beat, potentially opening new treatment options for people suffering from heart ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.