Stress breaks loops that hold short-term memory together: study

September 13, 2012

Stress has long been pegged as the enemy of attention, disrupting focus and doing substantial damage to working memory—the short-term juggling of information that allows us to do all the little things that make us productive.

By watching individual at work, a group of at the University of Wisconsin–Madison has revealed just how can addle the mind, as well as how neurons in the brain's help "remember" information in the first place.

Working memory is short-term and flexible, allowing the brain to hold a large amount of information close at hand to perform complex tasks. Without it, you would have forgotten the first half of this sentence while reading the second half. The prefrontal cortex is vital to working memory.

"In many respects, you'd look pretty normal without a prefrontal cortex," said Craig Berridge, UW–Madison . "You don't need that part of the brain to hear or talk, to keep long-term memories, or to remember what you did as a child or what you read in the newspaper three days ago."

But without your prefrontal cortex you'd be unable to stay on task or modulate your emotions well.

"People without a prefrontal cortex are very distractible," Berridge said. "They're very impulsive. They can be very argumentative."

The neurons of the prefrontal cortex help store information for short periods. Like a chalkboard, these neurons can be written with information, erased when that information is no longer needed, and rewritten with something new.

It's how the neurons maintain access to that short-term information that leaves them vulnerable to stress. David Devilbiss, a scientist working with Berridge and lead author on a study published today in the journal , applied a new statistical modeling approach to show that rat prefrontal neurons were firing and re-firing to keep recently stored information fresh.

"Even though these neurons communicate on a scale of every thousandth of a second, they know what they did one second to one-and-a-half seconds ago," Devilbiss said. "But if the neuron doesn't stimulate itself again within a little more than a second, it's lost that information."

Apply some stress—in the researchers' case, a loud blast of white noise in the presence of rats working on a maze designed to test working memory—and many neurons are distracted from reminding themselves of … what was it we were doing again?

"We're simultaneously watching dozens of individual neurons firing in the rats' brains, and under stress those neurons get even more active," said Devilbiss, whose work was supported by the National Science Foundation and National Institutes for Health. "But what they're doing is not retaining information important to completing the maze. They're reacting to other things, less useful things."

Without the roar of white noise, which has been shown to impair rats in the same way it does monkeys and humans, the maze-runners were reaching their goal about 90 percent of the time. Under stress, the animals completed the test at a 65 percent clip, with many struggling enough to fall to blind chance.

Recordings of the electrical activity of prefrontal cortex neurons in the maze-running rats showed these neurons were unable to hold information key to finding the next chocolate chip reward. Instead, the neurons were frenetic, reacting to distractions such as noises and smells in the room.

The effects of stress-related distraction are well-known and dangerous.

"The literature tells us that stress plays a role in more than half of all workplace accidents, and a lot of people have to work under what we would consider a great deal of stress," Devilbiss said. "Air traffic controllers need to concentrate and focus with a lot riding on their actions. People in the military have to carry out these thought processes in conditions that would be very distracting, and now we know that this distraction is happening at the level of individual cells in the brain."

The researchers' work may suggest new directions for treatment of prefrontal cortex dysfunction.

"Based on drug studies, it had been believed stress simply suppressed prefrontal cortex activity," Berridge said. "These studies demonstrate that rather than suppressing activity, stress modifies the nature of that activity. Treatments that keep neurons on their self-stimulating task while shutting out distractions may help protect ."

Explore further: Researchers gain new insight into prefrontal cortex activity

Related Stories

Researchers gain new insight into prefrontal cortex activity

March 5, 2012
The brain has a remarkable ability to learn new cognitive tasks while maintaining previously acquired knowledge about various functions necessary for everyday life. But exactly how new information is incorporated into brain ...

Researchers show how memory is lost -- and found

July 27, 2011
Yale University researchers can't tell you where you left your car keys- but they can tell you why you can't find them.

Study provides potential explanation for mechanisms of associative memory

December 13, 2011
Researchers from the University of Bristol have discovered that a chemical compound in the brain can weaken the synaptic connections between neurons in a region of the brain important for the formation of long-term memories. ...

Filters that reduce 'brain clutter' identified

April 14, 2011
(PhysOrg.com) -- McGill researchers suggest malfunctions in neurons that filter visual information may be responsible for diseases such as ADHD and schizophrenia.

Recommended for you

Scientists reveal new avenue for drug treatment in neuropathic pain

November 24, 2017
New research from King's College London has revealed a previously undiscovered mechanism of cellular communication, between neurons and immune cells, in neuropathic pain.

Small but distinct differences among species mark evolution of human brain

November 23, 2017
The most dramatic divergence between humans and other primates can be found in the brain, the primary organ that gives our species its identity.

Team constructs whole-brain map of electrical connections key to forming memories

November 22, 2017
A team of neuroscientists at the University of Pennsylvania has constructed the first whole-brain map of electrical connectivity in the brain based on data from nearly 300 neurosurgical patients with electrodes implanted ...

To forget or to remember? Memory depends on subtle brain signals, scientists find

November 22, 2017
The fragrance of hot pumpkin pie can bring back pleasant memories of holidays past, while the scent of an antiseptic hospital room may cause a shudder. The power of odors to activate memories both pleasing and aversive exists ...

Pitch imperfect? How the brain decodes pitch may improve cochlear implants

November 22, 2017
Picture yourself with a friend in a crowded restaurant. The din of other diners, the clattering of dishes, the muffled notes of background music, the voice of your friend, not to mention your own – all compete for your ...

New research suggests high-intensity exercise boosts memory

November 22, 2017
The health advantages of high-intensity exercise are widely known but new research from McMaster University points to another major benefit: better memory.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.