Understanding the biomechanics of traumatic brain injury to find treatments for the injured

October 19, 2012 by Beth Kwon
Understanding the Biomechanics of Traumatic Brain Injury to Find Treatments for the Injured
Images of various preparations used to study traumatic brain injury in Barclay Morrison's laboratory. Left: a mixed culture of brain cells stained for neurons (green) and auxiliary brain cells (red). Center: a hippocampal slice stained for inhibitory neurons (green). Right: a living hippocampal culture on a microelectrode array (black dots) to record neuronal activity after injury.

Barclay Morrison, an associate professor of biomedical engineering, compares the brain's physical response to traumatic brain injury to, of all things, a gelatin dessert.

"If you take a bowl of Jell-O and spin it rapidly, it wiggles inside the confines of the bowl, and as it wiggles, it stretches without changing volume, just like the brain," he says.

All it takes is 40 milliseconds to sustain a life-changing . That blow to the head—or mechanical stimulus, as scientists call it—sets in motion a cascade of biological responses inside the skull responsible for the injury's devastating consequences.

There are more than 1.7 million head injuries in the United States each year, according to the Centers for Disease Control, but no treatment as yet for the progressive damage from that can lead to disorders ranging from to Parkinson's, Alzheimer's and epilepsy.

Morrison and his team are tackling the problem by exploring the biomechanics of the brain and its response on a to .

In his laboratory in Engineering Terrace, Morrison takes a silicone substrate, a flexible disk the thickness of a fingernail, cultures living brain tissue on it and stretches it over a metal tube to simulate the deformation of the brain during an injury. He tests how far tissue can stretch before neurons die and whether drug therapies can prevent cell death, with the ultimate goal of slowing or stopping the damage. He's also studying the hippocampus, the region most vulnerable to brain injury and responsible for memory and learning, as well as the cortex, the largest part of the brain.

Thomas M. Jessell, the Claire Tow professor of Motor Neuron Disorders in Neuroscience and professor of biochemistry and molecular biophysics, discusses MBBI and the Greene Science Center.

His lab has made progress recently on repetitive head injuries—when an initial injury causes little apparent damage but a subsequent blow soon after results in substantial harm. In research presented at the 2012 National Neurotrauma Symposium, Morrison showed that after an initial injury treated with estrogen and memantine (a drug that is also used to treat Alzheimer's symptoms) appeared to be more resistant when subjected to a second injury the next day. "We're looking at treatments to break the synergy between two injuries," Morrison says.

The work has potential applications in a number of fields besides athletics. One of Morrison's research projects is a Department of Defense-sponsored collaboration with the University of Pennsylvania and Duke University. Its findings, which could be implemented within three to five years, could affect helmet design or regulations for how long a soldier should rest after being subjected to a blast from an improvised explosive device, for example. Another study sponsored by the National Highway Traffic Safety Administration focuses on providing insight into how the brain responds to different types of impact, research that could be applied to crash simulations for designing safer cars.

Morrison followed a family tradition into engineering, like his father and grandfathers before him. He grew up building model cars, planes and rockets, but was also fascinated with the brain and biology. Those interests led him to Johns Hopkins, where he studied biomedical engineering before getting his master's and Ph.D. at the University of Pennsylvania. After a post-doc stint at the University of Southampton in Great Britain, he joined Columbia in 2003.

He got involved in traumatic brain injury while at Penn, whose medical school is home to the renowned Center for Brain Injury and Repair. "In graduate school when I was looking for a problem that would interest me, the combination of the biomechanics and biology of head injury is what drew me to it," Morrison says." Twenty years later, I'm still excited by that combination as we make progress reducing the socioeconomic costs of TBI."

Explore further: Traumatic brain injury linked with tenfold increase in stroke risk

Related Stories

Traumatic brain injury linked with tenfold increase in stroke risk

July 28, 2011
If you suffer traumatic brain injury, your risk of having a stroke within three months may increase tenfold, according to a new study reported in Stroke: Journal of the American Heart Association.

Headaches worse with mild head trauma than more severe trauma

June 20, 2012
(HealthDay) -- People who've had a mild traumatic brain injury have more severe headaches and a greater number of headaches than those who've had moderate to severe brain injury, a new study finds.

Estrogen hormone reveals protective ability after traumatic brain injury

April 23, 2012
With more than 1.7 million people sustaining a traumatic brain injury each year, the need to identify processes to limit inflammation and subsequent damage is critical. Approximately 275,000 people are hospitalized annually ...

Mild traumatic brain injury may alter brain's neuronal circuit excitability and contribute to brain network dysfunction

May 11, 2012
Even mild head injuries can cause significant abnormalities in brain function that last for several days, which may explain the neurological symptoms experienced by some individuals who have experienced a head injury associated ...

Study: New treatment for traumatic brain injury shows promise in animals

February 19, 2012
A new drug is showing promise in shielding against the harmful effects of traumatic brain injury (TBI) in rats, according to a study that was released today and will be presented at the American Academy of Neurology's 64th ...

Recommended for you

Tracking effects of a food preservative on the gut microbiome

December 18, 2017
Antimicrobial compounds added to preserve food during storage are believed to be benign and non-toxic to the consumer, but there is "a critical scientific gap in understanding the potential interactions" they may have with ...

Drug found that induces apoptosis in myofibroblasts reducing fibrosis in scleroderma

December 15, 2017
(Medical Xpress)—An international team of researchers has found that the drug navitoclax can induce apoptosis (self-destruction) in myofibroblasts in mice, reducing the spread of fibrosis in scleroderma. In their paper ...

How defeating THOR could bring a hammer down on cancer

December 14, 2017
It turns out Thor, the Norse god of thunder and the Marvel superhero, has special powers when it comes to cancer too.

Researchers track muscle stem cell dynamics in response to injury and aging

December 14, 2017
A new study led by researchers at Sanford Burnham Prebys Medical Discovery Institute (SBP) describes the biology behind why muscle stem cells respond differently to aging or injury. The findings, published in Cell Stem Cell, ...

'Human chronobiome' study informs timing of drug delivery, precision medicine approaches

December 13, 2017
Symptoms and efficacy of medications—and indeed, many aspects of the human body itself—vary by time of day. Physicians tell patients to take their statins at bedtime because the related liver enzymes are more active during ...

Study confirms link between the number of older brothers and increased odds of being homosexual

December 12, 2017
Groundbreaking research led by a team from Brock University has further confirmed that sexual orientation for men is likely determined in the womb.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.