Brainwave training boosts network for cognitive control and affects mind-wandering

October 24, 2012

A breakthrough study conducted in Canada has found that training of the well-known brainwave in humans, the alpha rhythm, enhances a brain network responsible for cognitive-control. The training technique, termed neurofeedback, is being considered as a promising new method for restoring brain function in mental disorders. Using several neuroimaging methods, a team of researchers at the Western University and the Lawson Health Research Institute have now uncovered that functional changes within a key brain network occur directly after a 30-minute session of noninvasive, neural-based training. Dysfunction of this cognitive-control network has previously been implicated in a range of brain disorders including attention deficit hyperactivity disorder, schizophrenia, depression and post-traumatic stress disorder.

During neurofeedback, users learn to control their own activity with the help of a brain-computer interface. In the simplest case, this consists of a computer that records brainwaves through surface sensors on the scalp, known as an EEG (electroencephalogram). The system is then able to process and simultaneously represent a user's real-time brain activity, displayed from moment-to-moment during a training game on a computer. This setup is known as a neurofeedback loop, because information of is continually fed-back to a user reflecting their level of control. Such real-time feedback allows users to reproduce distinct brain states under physiologically-normal conditions, promising to be an innovative way to foster brain changes without adverse effects. This is possible because of neuroplasticity, a natural property of the brain that enables it to reorganise after continual training, resulting from adjustments to its own activity.

The new findings firstly help to address a long-standing issue in the field: whether neurofeedback training can trigger any brain changes at all? "The effects we observed were durable enough to be detected with functional MRI up to 30 minutes after a session of neurofeedback which allowed us to compare brain and behavioral measures more closely in time," says Tomas Ros, PhD, lead author of the study, now at University of Geneva. "We were excited to find that increased metabolic coupling within a key cognitive network was reflected in the individual level of brainwave change provoked by neurofeedback. The same measures were found to be tightly correlated with reductions in mind-wandering during an attention task. Amazingly, this would imply that the brain's function may be entrained in a direction that is more attentive and quiet. In other words, our findings speak for the exquisite functional plasticity of the adult brain, whose past activity of little more than 30 minutes ago can condition its future state of processing. This has already been hinted at in meditation research, but we arrived at a direct and explicit demonstration by harnessing a brain-computer interface."

Senior author Dr. Ruth Lanius, a professor in the Department of Psychiatry at Western's Schulich School of Medicine & Dentistry and a scientist with Lawson Health Research Institute adds: "Compared to the lack of significant findings in the control group that received training with false feedback, our findings are unambiguously supportive of a direct and plastic impact of neurofeedback on a central cognitive-control network, suggesting a promising basis for its use to treat cognitive disorders. We hope that our observations will stimulate more research by the science community in order to fully evaluate EEG neurofeedback as a viable and potentially revolutionary approach for the treatment of . We are very excited by this promise and anticipate a host of new studies in this direction, particularly for cognitive disorders. Our current work has now moved into the clinical domain to examine whether patients with post-traumatic stress disorder may benefit from this advance." The study was directed by Lanius and Dr. Jean Theberge.

Explore further: Re-training the brain

Related Stories

Re-training the brain

November 9, 2011
(Medical Xpress) -- People experiencing the early signs of Parkinson’s disease could see their symptoms improved through a process of regulating and re-training how their brains respond to certain activities and actions, ...

Dealing with depression

June 11, 2012
(Medical Xpress) -- A technique which helps people control activity in a specific part of their brain could be used to help ease depression, University research has found.

Brain training computer game improves some cognitive functions relatively quickly

January 11, 2012
The brain training computer game "Brain Age" can improve executive functions and processing speed, even with a relatively short training period, but does not affect global cognitive status or attention, according to a study ...

Tuning out: How brains benefit from meditation

November 21, 2011
Experienced meditators seem to be able switch off areas of the brain associated with daydreaming as well as psychiatric disorders such as autism and schizophrenia, according to a new brain imaging study by Yale researchers.

Researchers gain new insight into prefrontal cortex activity

March 5, 2012
The brain has a remarkable ability to learn new cognitive tasks while maintaining previously acquired knowledge about various functions necessary for everyday life. But exactly how new information is incorporated into brain ...

Predicting post-traumatic stress disorder before it happens

June 13, 2012
Most people have intense emotional reactions to traumatizing events like road accidents or combat. But some suffer far longer, caught in the grip of long-term debilitating disorders such as Post-Traumatic Stress Disorder ...

Recommended for you

Researchers find monkey brain structure that decides if viewed objects are new or unidentified

August 18, 2017
A team of researchers working at the University of Tokyo School of Medicine has found what they believe is the part of the monkey brain that decides if something that is being viewed is recognizable. In their paper published ...

Study of nervous system cells can help to understand degenerative diseases

August 18, 2017
The results of a new study show that many of the genes expressed by microglia differ between humans and mice, which are frequently used as animal models in research on Alzheimer's disease and other neurodegenerative disorders.

How whip-like cell appendages promote bodily fluid flow

August 18, 2017
Researchers at Nagoya University have identified a molecule that enables cell appendages called cilia to beat in a coordinated way to drive the flow of fluid around the brain; this prevents the accumulation of this fluid, ...

Researchers make surprising discovery about how neurons talk to each other

August 17, 2017
Researchers at the University of Pittsburgh have uncovered the mechanism by which neurons keep up with the demands of repeatedly sending signals to other neurons. The new findings, made in fruit flies and mice, challenge ...

Neurons involved in learning, memory preservation less stable, more flexible than once thought

August 17, 2017
The human brain has a region of cells responsible for linking sensory cues to actions and behaviors and cataloging the link as a memory. Cells that form these links have been deemed highly stable and fixed.

How we recall the past: Neuroscientists discover a brain circuit dedicated to retrieving memories

August 17, 2017
When we have a new experience, the memory of that event is stored in a neural circuit that connects several parts of the hippocampus and other brain structures. Each cluster of neurons may store different aspects of the memory, ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.