Breakthrough on physical cause of vegetative state, other 'disorders of consciousness'

October 4, 2012

(Medical Xpress)—By exploring parts of the brain that trigger during periods of daydreaming and mind-wandering, neuroscientists from Western University have made a significant breakthrough in understanding what physically happens in the brain to cause vegetative state and other so-called "disorders of consciousness." 
 
Vegetative state and related disorders such as the minimally conscious state are amongst the least understood conditions in modern medicine because there is no particular type of brain damage that is known to cause them. This lack of knowledge leads to an alarmingly high level of misdiagnosis.

In support of the study titled, "A role for the default mode network in the bases of disorders of consciousness," Davinia Fernandez-Espejo, a post doctoral fellow at Western's Brain and Mind Institute, utilized a technique called tractography to investigate more than 50 patients suffering from varying degrees of brain injury.

This state-of-the-art (MRI) technique allows researchers to virtually reconstruct the pathways that connect different parts of the brain in the patients while detecting subtle differences in their brain damage.

Specifically, Fernandez-Espejo was able to show that in vegetative state patients, a group of known as the default mode network that are known to activate during periods of daydreaming and mind-wandering were significantly disconnected, relative to healthy individuals.

"These findings are a first step towards identifying biomarkers that will help us to improve diagnosis and to find possible therapies for these patients" says Fernandez-Espejo. "But they also give us new information about how the healthy brain generates consciousness."

The findings were released today in Annals of Neurology, the official journal of the and the Child Neurology Society. 

Explore further: New test may help distinguish between vegetative and minimally conscious state

Related Stories

New test may help distinguish between vegetative and minimally conscious state

May 13, 2011
(PhysOrg.com) -- In a new study published in Science, researchers from the University of Liege in Belgium, led by Dr. Melanie Boly, share the discovery of a new test that could aid physicians in differentiating between vegetative ...

Can new diagnostic approaches help assess brain function in unconscious, brain-injured patients?

May 9, 2012
Disorders of consciousness such as coma or a vegetative state caused by severe brain injury are poorly understood and their diagnosis has relied mainly on patient responses and measures of brain activity. However, new functional ...

WU researchers breakthrough with minimally conscious state patients

March 1, 2012
(Medical Xpress) -- Researchers from Western University have utilized their own game-changing technology – previously developed for use with patients in a vegetative state – to assess a more prevalent group of brain-injured ...

A combined method for detecting consciousness

January 9, 2012
The combination of transcranial magnetic stimulation and electroencephalography constitutes a new method allowing the traces of conscious activity to be revealed in brain injured patients.

Patients in a minimally conscious state remain capable of dreaming during their sleep

August 16, 2011
The question of sleep in patients with seriously altered states of consciousness has rarely been studied. Do ‘vegetative' patients (now also called patients in a state of unresponsive wakefulness) or minimally conscious ...

How the brain processes humour helps us understand emotions felt by vegetative state patients

July 7, 2011
(Medical Xpress) -- How the human brain processes jokes may help researchers determine if a person in a vegetative state can experience positive emotions – a breakthrough that could help friends, relatives and doctors ...

Recommended for you

Gene mutation causes low sensitivity to pain

December 13, 2017
A UCL-led research team has identified a rare mutation that causes one family to have unusually low sensitivity to pain.

Activating MSc glutamatergic neurons found to cause mice to eat less

December 13, 2017
(Medical Xpress)—A trio of researchers working at the State University of New York has found that artificially stimulating neurons that exist in the medial septal complex in mouse brains caused test mice to eat less. In ...

Scientists discover blood sample detection method for multiple sclerosis

December 13, 2017
A method for quickly detecting signs of multiple sclerosis has been developed by a University of Huddersfield research team.

LLNL-developed microelectrodes enable automated sorting of neural signals

December 13, 2017
Thin-film microelectrode arrays produced at Lawrence Livermore National Laboratory (LLNL) have enabled development of an automated system to sort brain activity by individual neurons, a technology that could open the door ...

Intermittent fasting found to increase cognitive functions in mice

December 12, 2017
(Medical Xpress)—The Daily Mail spoke with the leader of a team of researchers with the National Institute on Aging in the U.S. and reports that they have found that putting mice on a diet consisting of eating nothing every ...

Discovery deepens understanding of brain's sensory circuitry

December 12, 2017
Because they provide an exemplary physiological model of how the mammalian brain receives sensory information, neural structures called "mouse whisker barrels" have been the subject of study by neuroscientists around the ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.