Chemical engineer studies breast cancer by building bone, brain and lung tissues

October 3, 2012

Shelly Peyton, a chemical engineer at the University of Massachusetts Amherst, says scientists know that breast cancer will spread to many different types of tissues in the body, and that this migration is the key reason the cancer is deadly. What they don't know is why some forms of the cancer move to the brain, while others seek out bone or lung tissues.

Peyton is now using a three-year, $590,000 grant from the National Science Foundation to study how different types of breast cancer interact with different human tissues – tissues she and her research team can create in the laboratory to study how the cancer cells behave as these cells and tissues interact.

She also says by studying the destination of the cancer cells in the body, not the primary site where the cancer first develops, she hopes to be able to develop patient-specific therapies that can attack the cancer as it tries to seek out and colonize these diverse tissues.

Because Peyton is trying a new approach to understanding breast cancer, one based in engineering, not more traditional , her grant actually came from a subset of the NSF called the Physical and Engineering Sciences in Oncology, she says. "I think they saw what I was doing as a next step in the research on this disease," Peyton says.

The problem scientists face in combatting breast cancer is complex, and lends itself to new methods that are outside traditional medical research. Peyton says scientists understand that the reason 90 percent of the patients die from breast cancer is because it has spread to other parts of the body – a process known as metastasis. They also know that it moves to several very specific types of human tissues, depending on the type of breast cancer. Her task is to unravel the questions about which type of cancer moves to each type of tissue and to hopefully find a way to stop the spread of the disease.

"The critical question for me is where does it go and why," Peyton says. "We think there is some mechanical relationship there, but we don't know what it is."

Peyton will seek answers by combining her engineering expertise in creating biomaterials that mimic specific body tissues with a systematic measurement of the biological responses to certain types of cancer. Her team will build bone, brain and in the laboratory and form those tissues around different kinds of cancer cells. Using this method, they can analyze how the cancer cells and tissues interact. This can provide information on how the cancer grows once it arrives in the new tissues and what attracts the cancer cells in the first place, Peyton says.

Peyton creates testing platforms from polymers that have many key aspects of human tissues. When the artificial tissues are subject to real cancer cells, she says, it's possible to see how the disease develops and how cells move within those diseased tissues.

It's her dual role as biologist and an engineer that has opened up this type of research, Peyton says. "We are biologists enough where we can study cancer," she says, "and we're materials scientists enough to make the polymer tissue platforms."

Once the information is gathered, the results will then be subject to statistical modeling designed by her colleague Nicolas Reich, a UMass Amherst research professor in biostatistics. Peyton's plan is to correlate all these results so her lab can identify or create a drug for each specific cell- interaction for each type of . That way, they can develop patient-specific treatments.

"So we not only want to kill the breast , but also block their ability to spread to other tissues in the body," says Peyton. "That would be a revolutionary therapy that can be geared for each individual patient."

Explore further: Researchers discover protein that could help prevent the spread of cancer

Related Stories

Researchers discover protein that could help prevent the spread of cancer

May 4, 2011
A protein capable of halting the spread of breast cancer cells could lead to a therapy for preventing or limiting the spread of the disease.

Will my breast cancer spread? Discovery may predict probability of metastasis

October 23, 2011
Researchers from Huntsman Cancer Institute (HCI) at the University of Utah have discovered a new way to model human breast cancer that could lead to new tools for predicting which breast cancers will spread and new ways to ...

Scientists discover that squeezed cells pop out of overcrowded tissues

April 16, 2012
(Medical Xpress) -- Cancer Research UK scientists have shown that increasing pressure ejects surplus healthy cells from overcrowded tissues, revealing a possible link between this process  and the spread of cancer, according ...

Cellular 'glue' resists breast cancer

April 20, 2012
Early detection and advances in the treatment for breast cancer have improved the chances of survival, however new avenues for treatment are still needed in the battle against this disease. New research published in BioMed ...

Recommended for you

Cell-weighing method could help doctors choose cancer drugs

November 20, 2017
Doctors have many drugs available to treat multiple myeloma, a type of blood cancer. However, there is no way to predict, by genetic markers or other means, how a patient will respond to a particular drug. This can lead to ...

Lung cancer triggers pulmonary hypertension

November 17, 2017
Shortness of breath and respiratory distress often increase the suffering of advanced-stage lung cancer patients. These symptoms can be triggered by pulmonary hypertension, as scientists at the Max Planck Institute for Heart ...

Researchers discover an Achilles heel in a lethal leukemia

November 16, 2017
Researchers have discovered how a linkage between two proteins in acute myeloid leukemia enables cancer cells to resist chemotherapy and showed that disrupting the linkage could render the cells vulnerable to treatment. St. ...

Computer program finds new uses for old drugs

November 16, 2017
Researchers at the Case Comprehensive Cancer Center at Case Western Reserve University School of Medicine have developed a computer program to find new indications for old drugs. The computer program, called DrugPredict, ...

Pharmacoscopy improves therapy for relapsed blood cancer in a first clinical trial

November 16, 2017
Researchers at CeMM and the Medical University of Vienna presented a preliminary report in The Lancet Hematology on the clinical impact of an integrated ex vivo approach called pharmacoscopy. The procedures measure single-cell ...

Wider sampling of tumor tissues may guide drug choice, improve outcomes

November 15, 2017
A new study focused on describing genetic variations within a primary tumor, differences between the primary and a metastatic branch of that tumor, and additional diversity found in tumor DNA in the blood stream could help ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.