Chemical engineer studies breast cancer by building bone, brain and lung tissues

October 3, 2012

Shelly Peyton, a chemical engineer at the University of Massachusetts Amherst, says scientists know that breast cancer will spread to many different types of tissues in the body, and that this migration is the key reason the cancer is deadly. What they don't know is why some forms of the cancer move to the brain, while others seek out bone or lung tissues.

Peyton is now using a three-year, $590,000 grant from the National Science Foundation to study how different types of breast cancer interact with different human tissues – tissues she and her research team can create in the laboratory to study how the cancer cells behave as these cells and tissues interact.

She also says by studying the destination of the cancer cells in the body, not the primary site where the cancer first develops, she hopes to be able to develop patient-specific therapies that can attack the cancer as it tries to seek out and colonize these diverse tissues.

Because Peyton is trying a new approach to understanding breast cancer, one based in engineering, not more traditional , her grant actually came from a subset of the NSF called the Physical and Engineering Sciences in Oncology, she says. "I think they saw what I was doing as a next step in the research on this disease," Peyton says.

The problem scientists face in combatting breast cancer is complex, and lends itself to new methods that are outside traditional medical research. Peyton says scientists understand that the reason 90 percent of the patients die from breast cancer is because it has spread to other parts of the body – a process known as metastasis. They also know that it moves to several very specific types of human tissues, depending on the type of breast cancer. Her task is to unravel the questions about which type of cancer moves to each type of tissue and to hopefully find a way to stop the spread of the disease.

"The critical question for me is where does it go and why," Peyton says. "We think there is some mechanical relationship there, but we don't know what it is."

Peyton will seek answers by combining her engineering expertise in creating biomaterials that mimic specific body tissues with a systematic measurement of the biological responses to certain types of cancer. Her team will build bone, brain and in the laboratory and form those tissues around different kinds of cancer cells. Using this method, they can analyze how the cancer cells and tissues interact. This can provide information on how the cancer grows once it arrives in the new tissues and what attracts the cancer cells in the first place, Peyton says.

Peyton creates testing platforms from polymers that have many key aspects of human tissues. When the artificial tissues are subject to real cancer cells, she says, it's possible to see how the disease develops and how cells move within those diseased tissues.

It's her dual role as biologist and an engineer that has opened up this type of research, Peyton says. "We are biologists enough where we can study cancer," she says, "and we're materials scientists enough to make the polymer tissue platforms."

Once the information is gathered, the results will then be subject to statistical modeling designed by her colleague Nicolas Reich, a UMass Amherst research professor in biostatistics. Peyton's plan is to correlate all these results so her lab can identify or create a drug for each specific cell- interaction for each type of . That way, they can develop patient-specific treatments.

"So we not only want to kill the breast , but also block their ability to spread to other tissues in the body," says Peyton. "That would be a revolutionary therapy that can be geared for each individual patient."

Explore further: Researchers discover protein that could help prevent the spread of cancer

Related Stories

Researchers discover protein that could help prevent the spread of cancer

May 4, 2011
A protein capable of halting the spread of breast cancer cells could lead to a therapy for preventing or limiting the spread of the disease.

Will my breast cancer spread? Discovery may predict probability of metastasis

October 23, 2011
Researchers from Huntsman Cancer Institute (HCI) at the University of Utah have discovered a new way to model human breast cancer that could lead to new tools for predicting which breast cancers will spread and new ways to ...

Scientists discover that squeezed cells pop out of overcrowded tissues

April 16, 2012
(Medical Xpress) -- Cancer Research UK scientists have shown that increasing pressure ejects surplus healthy cells from overcrowded tissues, revealing a possible link between this process  and the spread of cancer, according ...

Cellular 'glue' resists breast cancer

April 20, 2012
Early detection and advances in the treatment for breast cancer have improved the chances of survival, however new avenues for treatment are still needed in the battle against this disease. New research published in BioMed ...

Recommended for you

New bowel cancer drug target discovered

October 17, 2017
Researchers at the Francis Crick Institute have discovered a new drug target for bowel cancer that is specific to tumour cells and therefore less toxic than conventional therapies.

Using artificial intelligence to improve early breast cancer detection

October 17, 2017
Every year 40,000 women die from breast cancer in the U.S. alone. When cancers are found early, they can often be cured. Mammograms are the best test available, but they're still imperfect and often result in false positive ...

Many pelvic tumors in women may have common origin—fallopian tubes

October 17, 2017
Most—and possibly all—ovarian cancers start, not in ovaries, but instead in the fallopian tubes attached to them.

Researchers find novel mechanism of resistance to anti-cancer drugs

October 17, 2017
The targeted anti-cancer therapies cetuximab and panitumumab are mainstays of treatment for advanced colorectal cancer, the second leading cause of cancer-related deaths in the United States. However, many patients have tumors ...

New assay may boost targeted treatment of non-Hodgkin lymphoma

October 17, 2017
Diffuse large B-cell lymphoma (DLBCL) is an aggressive cancer and the most frequently diagnosed non-Hodgkin lymphoma worldwide (nearly 40% of cases). Recent advancements indicate that both the prognosis and choice of treatment ...

Biology of childhood brain tumor subtypes offers clues to precision treatments

October 17, 2017
Researchers investigating pediatric low-grade gliomas (PLGG), the most common type of brain tumor in children, have discovered key biological differences in how mutated genes combine with other genes to drive this childhood ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.