3-D technology boosts project to aid heart surgery

October 16, 2012 by Rosie Gochnour And Joe Kullman, Arizona State University
3-D technology boosts project to aid heart surgery
Heart models developed by ASU biomedical engineers show details of various kinds of anatomical defects. Credit: Jessica Slater/ASU

(Medical Xpress)—Efforts to improve preparation for heart surgery are the focus of a collaboration of Arizona State University biomedical engineering researchers and physicians at Phoenix Children's Hospital and St. Joseph's Hospital and Medical Center in Phoenix.

Surgeons at these medical facilities are using three-dimensional physical models of hearts developed by an ASU team led by David Frakes, an assistant professor in the School of Biological and Health Systems Engineering and the School of Electrical, Computer and Energy Engineering, two of ASU's Ira A. Fulton Schools of Engineering.

The models are constructed using information acquired from computed tomography (CT) scans and as a design blueprint. 

The custom-made models reveal a wealth of information about a patient's heart condition, providing physicians with a tool to aid surgical planning with the aim of decreasing the likelihood of complications during surgery.

The project has recently been aided by the acquisition of a three-dimensional printer with the support of a $75,000 grant from Phoenix Children's Hospital Leadership Circle awarded to Stephen Pophal, director of the Children's Heart Center for .

The Leadership Circle is a group of more than 100 community leaders who help raise funding for and new technologies for the hospital.

Use of the new printer significantly improves the manner in which a three-dimensional heart structure is communicated to surgeons, giving them a quick, accurate and intuitive understanding of a patient's anatomical condition.

"This knowledge means patients can spend a lot less time in surgery and under anesthesia, which could greatly reduce the risks of these ," explains Frakes, who is also working to develop use of the models as educational tools.

Justin Ryan, a biomedical engineering doctoral student on Frakes' research team, describes the three-dimensional printing technique as similar to constructing a building out of bricks. "Many layers of bricks, laid from the ground up, create a building – a full three-dimensional object," he says. "The heart models are essentially printed one brick at a time in layers, until the model is whole."

The new printer at Phoenix Children's Hospital produces three-dimensional heart models by first printing extremely thin two-dimensional slices, which are then bound together by an adhesive and sprayed with ink to give the model various colors that denote specific anatomical features. An average heart model printout consists of around 600 bound layers, each only about one-tenth of a millimeter thick.

Explore further: ASU bioengineers will expand work to solve cardiovascular health challenges

Related Stories

ASU bioengineers will expand work to solve cardiovascular health challenges

June 28, 2011
Biomedical research at Arizona State University will be boosted with support from the American Heart Association for the work of three bioengineers.

3-D printing technology from CT images may be used effectively for neurosurgical planning

April 29, 2011
3D models, produced by combining a patient's CT scans and 3D printing technology are proving useful in neurosurgical planning.

First study of heart 'maps' for kids could help correct rapid rhythms

July 23, 2012
The first study of a procedure to make three-dimensional "maps" of electrical signals in children's hearts could help cardiologists correct rapid heart rhythms in young patients, according to new research presented at the ...

Virtual surgery shows promise in personalized treatment of nasal obstruction

April 18, 2011
A preliminary report suggests that virtual nasal surgery has the potential to be a productive tool that may enable surgeons to perform personalized nasal surgery using computer simulation techniques, according to a report ...

Recommended for you

New cellular pathway helps explain how inflammation leads to artery disease

June 21, 2018
Investigators have identified a new cellular pathway that may help explain how arterial inflammation develops into atherosclerosis—deposits of cholesterol, fats and other substances that create plaque, clog arteries and ...

'Smart stent' detects narrowing of arteries

June 19, 2018
For every three individuals who have had a stent implanted to keep clogged arteries open and prevent a heart attack, at least one will experience restenosis—the renewed narrowing of the artery due to plaque buildup or scarring—which ...

Marriage may protect against heart disease / stroke and associated risk of death

June 18, 2018
Marriage may protect against the development of heart disease/stroke as well as influencing who is more likely to die of it, suggests a pooled analysis of the available data, published online in the journal Heart.

Deaths from cardiac arrest are misclassified, overestimated

June 18, 2018
Forty percent of deaths attributed to cardiac arrest are not sudden or unexpected, and nearly half of the remainder are not arrhythmic—the only situation in which CPR and defibrillators are effective—according to an analysis ...

Tick-borne meat sensitivity linked to heart disease

June 15, 2018
University of Virginia School of Medicine researchers have linked sensitivity to an allergen in red meat—a sensitivity spread by tick bites—with a buildup of fatty plaque in the arteries of the heart. This buildup may ...

The molecules that energize babies' hearts

June 14, 2018
A metabolic process that provides heart muscle with energy fails to mature in newborns with thickened heart walls, according to a Japan–Canada research team.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.