Gene linked to inflammation in the aorta may contribute to abdominal aortic aneurysm

October 24, 2012

A gene known to be involved in cancer and cardiovascular development may be the cause of inflammation in the most common form of aortic aneurysm and may be a key to treatment, according to research from Nationwide Children's Hospital. The study, appearing online in Arteriosclerosis, Thrombosis, and Vascular Biology on October 18, 2012, is the first to show that Notch 1 signaling is activated in abdominal aortic aneurysmal tissue in mice and humans.

The aorta is the largest blood vessel in the body. Abdominal (AAA) occurs when the weakened aortic wall dilates in the abdominal portion of the vessel; they are the most common form of aortic aneurysms. AAA is a leading cause of death in the United States, especially among men over the age 65, and the disease is linked to smoking, and . AAA is extremely rare in children, but can occur in those who experience a blunt trauma or who have connective tissue diseases. Surgery is currently the only treatment for AAA and less than 20 percent of patients will survive a .

"There is critical need to develop pharmacologic interventions that can selectively target one or more features of AAA to prevent the progression or stimulate regression in already diagnosed patients," says the study's senior author, Vidu Garg, MD a cardiologist in The Heart Center at Nationwide Children's Hospital and a principal investigator in the Center for Cardiovascular and Pulmonary Research.

Inflammation is a hallmark of AAA. The Notch 1 gene is involved in many developmental processes in humans and studies have shown its signaling pathway to be active in several .

"Notch 1 signaling is a significant regulator of the ," says the study's lead author, Chetan Hans, PhD, principal investigator in the Center for Cardiovascular and Pulmonary Research at Nationwide Children's Hospital. "However, its role in AAA is unknown."

To examine the role of Notch 1 signaling in AAA development, Dr. Hans and colleagues first inspected tissue specimens from the abdominal aorta of patients undergoing AAA repair and a mouse model of the disease. They provide the first evidence that Notch 1 signaling is activated in these models and in human patients. They then closely examined the role Notch 1 signaling plays in the Angiotensin II-induced mouse model of AAA, when Notch 1 signaling is inhibited.

Findings showed that mice that had a genetic deficiency of Notch1 or received a chemical Notch inhibitor had less inflammation in the aorta and had a reduced incidence of AAA.

"Our data suggest that Notch 1 is an important player in the inflammatory process in the setting of AAA," says Dr. Hans. "Treatment with Notch 1-specific inhibitors may be a potentially promising strategy for slowing aneurysm development."

Dr. Hans says further studies are needed to understand the specific role of these inflammatory factors in AAA.

Explore further: Gene discovered as cause of fatal condition

Related Stories

Gene discovered as cause of fatal condition

November 3, 2011
Medical scientists have for the first time identified a gene responsible for a fatal abdominal condition that afflicts tens of thousands of people across the world.

Screening for abdominal aortic aneurysms indicated

February 24, 2012
Population-based screening for often fatal abdominal aortic aneurysms (AAAs) should be given serious consideration, according to a new study from the University of Otago, Wellington.

Scientists find new mechanism by which cell signaling pathway contributes to rheumatoid arthritis development

May 20, 2012
A new study led by researchers at Hospital for Special Surgery identifies the mechanism by which a cell signaling pathway contributes to the development of rheumatoid arthritis (RA). In addition, the study provides evidence ...

Recommended for you

Researchers describe mechanism that underlies age-associated bone loss

September 22, 2017
A major health problem in older people is age-associated osteoporosis—the thinning of bone and the loss of bone density that increases the risk of fractures. Often this is accompanied by an increase in fat cells in the ...

Researchers develop treatment to reduce rate of cleft palate relapse complication

September 22, 2017
Young people with cleft palate may one day face fewer painful surgeries and spend less time undergoing uncomfortable orthodontic treatments thanks to a new therapy developed by researchers from the UCLA School of Dentistry. ...

Exosomes are the missing link to insulin resistance in diabetes

September 21, 2017
Chronic tissue inflammation resulting from obesity is an underlying cause of insulin resistance and type 2 diabetes. But the mechanism by which this occurs has remained cloaked, until now.

Thousands of new microbial communities identified in human body

September 20, 2017
A new study of the human microbiome—the trillions of microbial organisms that live on and within our bodies—has analyzed thousands of new measurements of microbial communities from the gut, skin, mouth, and vaginal microbiome, ...

Study finds immune system is critical to regeneration

September 20, 2017
The answer to regenerative medicine's most compelling question—why some organisms can regenerate major body parts such as hearts and limbs while others, such as humans, cannot—may lie with the body's innate immune system, ...

Immune cells produce wound healing factor, could lead to new IBD treatment

September 20, 2017
Specific immune cells have the ability to produce a healing factor that can promote wound repair in the intestine, a finding that could lead to new, potential therapeutic treatments for inflammatory bowel disease (IBD), according ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.