Putting a 'HEX' on muscle regeneration

October 1, 2012

A complex genetic regulatory network mediates the regeneration of adult skeletal muscles. In this issue of the Journal of Clinical Investigation, researchers at the State University of New York Downstate Medical Center in Brooklyn report that HEXIM1, a protein that regulates gene transcription, is important for skeletal muscle regeneration in mice.

M.A.Q. Saddiqui and colleagues found that HEXIM1 blocks gene expression that is required for muscle regeneration after injury.

Mice with a 50% reduction in HEXIM1 exhibited greater muscle mass and function after injury compared to mice with a normal amount of the gene.

These results indicate that HEXIM1 may be a in degenerative muscle diseases.

Explore further: Crucial role for molecule in muscle development

More information: HEXIM1 controls satellite cell expansion to regulate skeletal muscle regeneration, Journal of Clinical Investigation, 2012.

Related Stories

Crucial role for molecule in muscle development

July 4, 2011
Research led by the University of East Anglia has discovered the crucial role of a molecule in skeletal muscle development.

Taking a muscular approach towards diabetes and other diseases

May 30, 2012
Australian scientists have identified a gene that regulates muscle size, a finding that could help unlock therapies for Type 2 diabetes and diseases such as muscular dystrophy, where muscles are weakened and damaged.

'Hulk' protein, Grb10, controls muscle growth

August 30, 2012
Scientists have moved closer toward helping people grow big, strong muscles without needing to hit the weight room. Australian researchers have found that by blocking the function of a protein called Grb10 while mice were ...

Race to nerve regeneration: faster is better

October 3, 2011
A team of researchers led by Clifford Woolf and Chi Ma, at Children's Hospital Boston and Harvard Medical School, Boston, has identified a way to accelerate the regeneration of injured peripheral nerves in mice such that ...

Recommended for you

Drug found that induces apoptosis in myofibroblasts reducing fibrosis in scleroderma

December 15, 2017
(Medical Xpress)—An international team of researchers has found that the drug navitoclax can induce apoptosis (self-destruction) in myofibroblasts in mice, reducing the spread of fibrosis in scleroderma. In their paper ...

How defeating THOR could bring a hammer down on cancer

December 14, 2017
It turns out Thor, the Norse god of thunder and the Marvel superhero, has special powers when it comes to cancer too.

Researchers track muscle stem cell dynamics in response to injury and aging

December 14, 2017
A new study led by researchers at Sanford Burnham Prebys Medical Discovery Institute (SBP) describes the biology behind why muscle stem cells respond differently to aging or injury. The findings, published in Cell Stem Cell, ...

'Human chronobiome' study informs timing of drug delivery, precision medicine approaches

December 13, 2017
Symptoms and efficacy of medications—and indeed, many aspects of the human body itself—vary by time of day. Physicians tell patients to take their statins at bedtime because the related liver enzymes are more active during ...

Study confirms link between the number of older brothers and increased odds of being homosexual

December 12, 2017
Groundbreaking research led by a team from Brock University has further confirmed that sexual orientation for men is likely determined in the womb.

Potassium is critical to circadian rhythms in human red blood cells

December 12, 2017
An innovative new study from the University of Surrey and Cambridge's MRC Laboratory of Molecular Biology, published in the prestigious journal Nature Communications, has uncovered the secrets of the circadian rhythms in ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.