Putting a 'HEX' on muscle regeneration

October 1, 2012, Journal of Clinical Investigation

A complex genetic regulatory network mediates the regeneration of adult skeletal muscles. In this issue of the Journal of Clinical Investigation, researchers at the State University of New York Downstate Medical Center in Brooklyn report that HEXIM1, a protein that regulates gene transcription, is important for skeletal muscle regeneration in mice.

M.A.Q. Saddiqui and colleagues found that HEXIM1 blocks gene expression that is required for muscle regeneration after injury.

Mice with a 50% reduction in HEXIM1 exhibited greater muscle mass and function after injury compared to mice with a normal amount of the gene.

These results indicate that HEXIM1 may be a in degenerative muscle diseases.

Explore further: Crucial role for molecule in muscle development

More information: HEXIM1 controls satellite cell expansion to regulate skeletal muscle regeneration, Journal of Clinical Investigation, 2012.

Related Stories

Crucial role for molecule in muscle development

July 4, 2011
Research led by the University of East Anglia has discovered the crucial role of a molecule in skeletal muscle development.

Taking a muscular approach towards diabetes and other diseases

May 30, 2012
Australian scientists have identified a gene that regulates muscle size, a finding that could help unlock therapies for Type 2 diabetes and diseases such as muscular dystrophy, where muscles are weakened and damaged.

'Hulk' protein, Grb10, controls muscle growth

August 30, 2012
Scientists have moved closer toward helping people grow big, strong muscles without needing to hit the weight room. Australian researchers have found that by blocking the function of a protein called Grb10 while mice were ...

Race to nerve regeneration: faster is better

October 3, 2011
A team of researchers led by Clifford Woolf and Chi Ma, at Children's Hospital Boston and Harvard Medical School, Boston, has identified a way to accelerate the regeneration of injured peripheral nerves in mice such that ...

Recommended for you

Iron triggers dangerous infection in lung transplant patients, study finds

February 21, 2018
Researchers at the Stanford University School of Medicine have identified elevated tissue iron as a risk factor for life-threatening fungal infections in lung transplant recipients.

Neuroimaging reveals lasting brain deficits in iron-deficient piglets

February 21, 2018
Iron deficiency in the first four weeks of a piglet's life - equivalent to roughly four months in a human infant - impairs the development of key brain structures, scientists report. The abnormalities remain even after weeks ...

Products derived from plants offer potential as dual-targeting agents for experimental cerebral malaria

February 21, 2018
Malaria, a life-threatening disease usually caused when parasites from the Plasmodium family enter the bloodstream of a person bitten by a parasite-carrying mosquito, is a severe health threat globally, with 200 to 300 million ...

Scientists in Germany improve malaria drug production

February 21, 2018
Scientists in Germany who developed a new way to make a key malaria drug several years ago said Wednesday they have come up with a technique to make the process even more efficient, which should increase global access and ...

Early results from clinical trials not all they're cracked up to be, shows new research

February 21, 2018
When people are suffering from a chronic medical condition, they may place their hope on treatments in clinical trials that show early positive results. However, these results may be grossly exaggerated in more than 1 in ...

Clues to obesity's roots found in brain's quality control process

February 20, 2018
Deep in the middle of our heads lies a tiny nub of nerve cells that play a key role in how hungry we feel, how much we eat, and how much weight we gain.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.