Putting a 'HEX' on muscle regeneration

October 1, 2012, Journal of Clinical Investigation

A complex genetic regulatory network mediates the regeneration of adult skeletal muscles. In this issue of the Journal of Clinical Investigation, researchers at the State University of New York Downstate Medical Center in Brooklyn report that HEXIM1, a protein that regulates gene transcription, is important for skeletal muscle regeneration in mice.

M.A.Q. Saddiqui and colleagues found that HEXIM1 blocks gene expression that is required for muscle regeneration after injury.

Mice with a 50% reduction in HEXIM1 exhibited greater muscle mass and function after injury compared to mice with a normal amount of the gene.

These results indicate that HEXIM1 may be a in degenerative muscle diseases.

Explore further: Crucial role for molecule in muscle development

More information: HEXIM1 controls satellite cell expansion to regulate skeletal muscle regeneration, Journal of Clinical Investigation, 2012.

Related Stories

Crucial role for molecule in muscle development

July 4, 2011
Research led by the University of East Anglia has discovered the crucial role of a molecule in skeletal muscle development.

Taking a muscular approach towards diabetes and other diseases

May 30, 2012
Australian scientists have identified a gene that regulates muscle size, a finding that could help unlock therapies for Type 2 diabetes and diseases such as muscular dystrophy, where muscles are weakened and damaged.

'Hulk' protein, Grb10, controls muscle growth

August 30, 2012
Scientists have moved closer toward helping people grow big, strong muscles without needing to hit the weight room. Australian researchers have found that by blocking the function of a protein called Grb10 while mice were ...

Race to nerve regeneration: faster is better

October 3, 2011
A team of researchers led by Clifford Woolf and Chi Ma, at Children's Hospital Boston and Harvard Medical School, Boston, has identified a way to accelerate the regeneration of injured peripheral nerves in mice such that ...

Recommended for you

Using DeepMind's neural network learning system to diagnose eye diseases

August 14, 2018
Three institutions working together have applied DeepMind's neural network learning system to the task of discovering and diagnosing eye diseases. Moorfields Eye Hospital has been working with Google's DeepMind Health subsidiary ...

Artificial intelligence platform screens for acute neurological illnesses

August 13, 2018
An artificial intelligence platform designed to identify a broad range of acute neurological illnesses, such as stroke, hemorrhage, and hydrocephalus, was shown to identify disease in CT scans in 1.2 seconds, faster than ...

Researchers create specialized delivery methods to help treat cancer, other disorders

August 13, 2018
More than 100 years ago, German Nobel laureate Paul Ehrlich popularized the "magic bullet" concept—a method that clinicians might one day use to target invading microbes without harming other parts of the body. Although ...

Scientists identify why some kidney transplants don't work

August 13, 2018
Scientists have discovered a 'molecular signature' for the allostatic load – or 'wear and tear' of kidneys – which could help clinicians understand why some kidney transplants don't work as well as expected.

3-D printed biomaterials for bone tissue engineering

August 13, 2018
When skeletal defects are unable to heal on their own, bone tissue engineering (BTE), a developing field in orthopedics can combine materials science, tissue engineering and regenerative medicine to facilitate bone repair. ...

Tiny fruit flies unravelling the secrets to end of life

August 10, 2018
We are used to seeing them dive-bombing our glass of wine or hovering around the fruit bowl.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.