Computational intelligence opens up new avenues in Alzheimer's research

October 9, 2012, Universidad Politécnica de Madrid
Reconstruction of granule neurons (left). Granule neurons are estimated to account for 80% of dentate gyrus neurons. By contrast, pyramidal neurons are the most common neurons in the entorhinal cortex. Pyramidal neurons are the group most at risk from lesion in Alzheimer's disease. Credit: Facultad de Informática, UPM.

Researchers from the Computational Intelligence Group based at the Universidad Politécnica de Madrid's Facultad de Informática have used machine learning and data mining techniques to compare gene expresssion levels in Alzheimer's disease (AD) patients in two key regions of the hippocampus: the dentate gyrus, where the disease appears to have little or no effect, and the entorhinal cortex, where Alzheimer's disease produces major neuronal damage.

The results, published in Computer Methods and Programs in Biomedicine, corroborate previous findings by other studies and set forth new working hypotheses for AD research.

Dentate gyrus and entorhinal cortex

The hippocampal formation is a complex structure situated in the medial temporal lobe of the brain. It plays a key role in memory, attention and . It is composed of six regions: presubiculum, subiculum, parasubiculum, , hippocampus and entorhinal cortex. A noteworthy part of this formation is the dentate gyrus, one of the few regions of the brain where new neurons continue to be born (neurogenesis) throughout adulthood. It is known that neurogenesis plays a key role in the generation of . Postmortem histopathological studies have provided evidence that the dentate gyrus is the least affected by AD.

The entorhinal cortex is the primary interface between the hippocampus and the neocortex. This region plays a key role in and consolidation, as well as the retrieval of autobiographical, declarative and . Today, we know that the entorhinal cortex is not only one of the first areas to be affected by AD but also where its progression produces most lesions.

Data analysis using an ensemble of Bayesian classifiers

The data mining technique used is part of the computational intelligence discipline. Thanks to the computational power available today, vast amounts of complex data can be analysed holistically to identify new findings or set forth new hypotheses. This study has used ensemble statistical techniques applied to mathematical models to search for relevant genes and gene dependency networks. In both cases, the mathematical paradigm used is called Bayesian classifier.

Results

The results identify relevant genes in different neurological diseases, as well as key metabolic mechanisms that corroborate earlier molecular research in AD. One of these findings is the deregulation of the DEC1 and BTRC genes that help to regulate the molecular clock controlling the body's circadian rhythm.

One of the most common symptoms of AD is sleep disorder, an effect of the loss of the circadian reference. Patients' brains do not correctly identify when they should sleep or be awake. Sleepless periods increase amyloid beta levels, causing the disease to progress.

Another noteworthy result is the deregulation of the S100A10 gene. This gene plays a key role in serotonin receptors, whose activity is linked to neuropsychiatric symptoms in AD patients.

Similarly, it is known to be involved in the pathogenesis and deregulation of depressive disorders. The level of this gene's differential activity between the dentate gyrus and corroborates both these associations and recent findings identifying it as a new early biomarker of AD.

Explore further: Sleeping brain behaves as if it's remembering something, study shows

More information: Armañanzas, R., Larrañaga, P. & Bielza, C. (2012). Ensemble transcript interaction networks: A case study on Alzheimer's disease. Computer Methods and Programs in Biomedicine, 108(1), 442-450.

Related Stories

Sleeping brain behaves as if it's remembering something, study shows

October 7, 2012
UCLA researchers have for the first time measured the activity of a brain region known to be involved in learning, memory and Alzheimer's disease during sleep. They discovered that this part of the brain behaves as if it's ...

Brain circuits connected with memory discovered

November 7, 2011
(Medical Xpress) -- A new study published last week in Science reveals the discovery of a brain pathway that helps us link events that happen close together and play a role in memories.

Recommended for you

Rocky start for Alzheimer's drug research in 2018

January 19, 2018
The year 2018, barely underway, has already dealt a series of disheartening blows to the quest for an Alzheimer's cure.

Alzheimer's disease: Neuronal loss very limited

January 17, 2018
Frequently encountered in the elderly, Alzheimer's is considered a neurodegenerative disease, which means that it is accompanied by a significant, progressive loss of neurons and their nerve endings, or synapses. A joint ...

Anxiety: An early indicator of Alzheimer's disease?

January 12, 2018
A new study suggests an association between elevated amyloid beta levels and the worsening of anxiety symptoms. The findings support the hypothesis that neuropsychiatric symptoms could represent the early manifestation of ...

One of the most promising drugs for Alzheimer's disease fails in clinical trials

January 11, 2018
To the roughly 400 clinical trials that have tested some experimental treatment for Alzheimer's disease and come up short, we can now add three more.

Different disease types associated with distinct amyloid-beta prion strains found in Alzheimer's patients

January 9, 2018
An international team of researchers has found different disease type associations with distinct amyloid-beta prion strains in the brains of dead Alzheimer's patients. In their paper published in Proceedings of the National ...

Advances in brain imaging settle debate over spread of key protein in Alzheimer's

January 5, 2018
Recent advances in brain imaging have enabled scientists to show for the first time that a key protein which causes nerve cell death spreads throughout the brain in Alzheimer's disease - and hence that blocking its spread ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.