Link found between Alzheimer's disease and protein regulation in the brain—hope for new treatments

October 22, 2012

New study from the University of Haifa discovers: Link found between Alzheimer's disease and protein regulation in the brain brings hope for new treatments

's research has focused primarily on efforts to identify and treat the factors that contribute to familial (genetic) , which is caused by known . This new research sought to understand the mechanisms in the development of Alzheimer's that are linked to molecular response to the metabolic distress that increases with age.

A link has been discovered between Alzheimer's disease and the activity level of a protein called eIF2alpha. This has been reported in a new study conducted at the University of Haifa's Sagol Department of Neurobiology, recently published in the journal Neurobiology of Aging. According to Prof. Kobi Rosenblum, head of the Department, altering the performance of this protein via drug therapy could constitute a treatment for Alzheimer's, which is incurable.

Alzheimer's research in recent years has primarily focused on battling the disease once symptoms have appeared, even though it's known that the disease nests in the brain many years before any symptoms are revealed. In advanced stages of the disease, Prof. Rosenblum explains, small lumps (called plaques) are identified forming in the brain from a protein called amyloid. These plaques, he says, are typical of Alzheimer's sufferers and undermine functioning. Much research has been directed at understanding these plaques and trying to eliminate them or restrict their formation and growth.

The new study, conducted by research student Yifat Segev in the Laboratory for Research of Molecular and Underlying , which is headed by Prof. Rosenblum, in cooperation with Prof. Danny Michaelson of Tel Aviv University, sought to identify factors that could be linked to Alzheimer's even before the irreversible are formed, and that are connected to the disease's primary risk factor – age.

A previous study co-authored by Canadian researchers and Prof. Rosenblum's lab at the University of , revealed that cognitive abilities could be improved by altering the activity of the eIF2alpha protein, which regulates the creation of proteins in all cells, including nerve cells. That research gave Alzheimer's researchers a glimmer of hope: Perhaps it would be possible to improve cognitive abilities or even prevent cognitive damage in Alzheimer's patients at an early stage of the disease by intervening in the mechanisms that regulate protein generation in nerve cells.

The current study compared mice that expressed the human Apoe4 gene - a gene known as a central risk factor for Alzheimer's - with a group of mice with the parallel Apoe3 gene, which does not constitute a risk factor for the disease. Mice in the former group showed a change in the regulating mechanism for protein generation involving the eIF2alpha protein that damaged the cognitive abilities of those mice at a young age. This sort of mechanism change is characteristic of aging, and so also hinted at the tendency of these mice toward premature aging.

According to Segev, this is the first time that a link has been found between the activity of eIF2alpha and the Apoe4 gene in relation to Alzheimer's disease. She noted that modification treatments for the eIF2alpha mechanism are being widely researched and are developing quickly, and so the more we can understand about the connection between this mechanism and Alzheimer's, the more we can find ways to identify and slow the progress of the disease.

Explore further: Study reveals link between high cholesterol and Alzheimer's disease

Related Stories

Study reveals link between high cholesterol and Alzheimer's disease

September 12, 2011
People with high cholesterol may have a higher risk of developing Alzheimer's disease, according to a study published in the September 13, 2011, issue of Neurology, the medical journal of the American Academy of Neurology.

Scientists reveal new clues to Alzheimer's risk gene

July 27, 2012
(Medical Xpress) -- A study by scientists at the University of Southampton has revealed new clues to why people who carry the Alzheimer's risk gene APOE4 may be more likely to develop the disease.

Astrocytes as a novel target in Alzheimer's disease

October 11, 2012
Alzheimer's disease is a severe neurodegenerative disease that affects 45% of people over 85 years of age. The research teams of Prof. Jin-Moo Lee at Washington University in Saint Louis, USA, and Prof. Milos Pekny at Sahlgrenska ...

Treatment with vitamin C dissolves toxic protein aggregates in Alzheimer's disease

August 18, 2011
Researchers at Lund University have discovered a new function for vitamin C. Treatment with vitamin C can dissolve the toxic protein aggregates that build up in the brain in Alzheimer's disease. The research findings are ...

Road block as a new strategy for the treatment of Alzheimer's

August 22, 2011
Blocking a transport pathway through the brain cells offers new prospects to prevent the development of Alzheimer's. Wim Annaert and colleagues of VIB and K.U. Leuven discovered that two main agents involved in the inception ...

Recommended for you

PET scans for Alzheimer's could bring benefit to more patients

October 19, 2017
An imaging tool honed to spot rogue proteins in the brain could benefit some patients with suspected Alzheimer's, according to a new study.

One step closer toward a treatment for Alzheimer's disease?

October 18, 2017
Scientists at the Massachusetts General Hospital (MGH), in collaboration with colleagues at the University California, San Diego (UCSD), have characterized a new class of drugs as potential therapeutics for Alzheimer's disease ...

New mechanism detected in Alzheimer's disease

October 13, 2017
McGill University researchers have discovered a cellular mechanism that may contribute to the breakdown of communication between neurons in Alzheimer's disease.

Neuroscientists identify genetic changes in microglia in a mouse model of neurodegeneration and Alzheimer's disease

October 13, 2017
Microglia, immune cells that act as the central nervous system's damage sensors, have recently been implicated in Alzheimer's disease.

Green tea extract delivers molecular punch to disrupt formation of neurotoxic species

October 11, 2017
Green tea is widely considered to be beneficial for the brain. The antioxidant and detoxifying properties of green tea extracts help fight catastrophic diseases such as Alzheimer's. However, scientists have never fully understood ...

Menopause triggers metabolic changes in brain that may promote Alzheimer's

October 10, 2017
Menopause causes metabolic changes in the brain that may increase the risk of Alzheimer's disease, a team from Weill Cornell Medicine and the University of Arizona Health Sciences has shown in new research.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.