New MRI technique allows detailed imaging of complex muscle structures and muscle damage

October 30, 2012
New MRI technique allows detailed imaging of complex muscle structures and muscle damage
A still from a video showing the muscles of the pelvic floor of a test subject. Click on the image to see the video.

TU/e and the Academic Medical Center in Amsterdam have together developed a technique that allows detailed 3D imaging of complex muscle structures of patients. It also allows muscle damage to be detected very precisely. This new technique opens the way to much better and more patient-friendly diagnosis of muscular diseases. It also allows accurate, non-invasive muscle examinations among top athletes. Martijn Froeling will receive a PhD for this research at TU/e today, Monday 29 October.

Froeling uses (DTI), an that allows the movements of water molecules in living tissue to be viewed. Because muscles are made of fibers, the movements of water molecules in the direction of the fibers are different from those in other directions. This characteristic allows muscles to be imaged with a high level of detail. This was already possible on a small scale with simple muscles, but thanks to Froeling's work it can now also be done on a larger scale and with complex muscle structures. More importantly, this improved technique also reveals very small , because of the different movements of the water molecules in damaged .

3D images

To reach these results, Froeling improved the data acquisition process – the way the MRI scanner images the muscle under examination. This has to be performed relatively quickly, because it is uncomfortable for patients to lie in an for a long time, but at the same time it has to provide sufficiently detailed data. He also improved the processing of the acquired data into reliable 3D images. Physicians can now easily view complex muscle structures from all angles on-screen. No new equipment was needed; the researchers used standard widely available clinical systems.

Marathon runners

As a practical study, Froeling imaged a range of subjects including the thighs of marathon runners at different times: one week before a marathon, two days after it, and again three weeks after. He was able to visualize the muscle damage following the marathon. This was still visible after three weeks, even though the runners themselves in many cases no longer reported any pain in their muscles. Another study was of the pelvic floor in women; a good example of a highly complex muscle structure. The technique has proved to be capable of imaging this structure with great accuracy, which makes it potentially very valuable for the diagnosis of conditions such as uterine prolapse.

Wide application area

AMC Amsterdam and TU/e now intend to use this technique in studies of post polio syndrome and spinal muscular atrophy. Froeling believes there are numerous potential applications: there are around 600 different types of muscle disease and damage, and the new technique will improve the ability to study these. However further studies will first be needed: although the technique allows muscle disease or injury to be imaged it does not reveal the precise cause, which may be tearing, fat infiltration or other abnormalities. Clarification is also still needed on what are the normal values for healthy men and women of different ages, to provide a reference framework for identifying abnormalities in different groups of patients. Another kind of application is in examinations of top athletes, to allow timely detection of muscle damage or better estimation of the recovery time needed after injuries.

Explore further: Researchers quantify muscle soreness

Related Stories

Researchers quantify muscle soreness

January 23, 2012
Quantifying how sore a person is after a long workout is a challenge for doctors and researchers, but scientists from Loma Linda and Asuza Pacific Universities think they may have figured it out. Their research article describing ...

At the right place at the right time—new insights into muscle stem cells

September 17, 2012
Muscles have a pool of stem cells which provides a source for muscle growth and for regeneration of injured muscles. The stem cells must reside in special niches of the muscle for efficient growth and repair.

Extreme cold good for exercise recovery

December 7, 2011
Athletes go to great lengths to protect their muscles and recover from exercise-induced muscle damage, but there has been little work to determine what methods are most effective.

New research says muscles buckle when relaxed

November 1, 2011
Multiple sclerosis, cerebral palsy, and other conditions involving muscle spasticity be better understood following the discovery by Australian researchers that muscle fibres buckle when at rest.

Recommended for you

Researchers describe mechanism that underlies age-associated bone loss

September 22, 2017
A major health problem in older people is age-associated osteoporosis—the thinning of bone and the loss of bone density that increases the risk of fractures. Often this is accompanied by an increase in fat cells in the ...

Researchers develop treatment to reduce rate of cleft palate relapse complication

September 22, 2017
Young people with cleft palate may one day face fewer painful surgeries and spend less time undergoing uncomfortable orthodontic treatments thanks to a new therapy developed by researchers from the UCLA School of Dentistry. ...

Exosomes are the missing link to insulin resistance in diabetes

September 21, 2017
Chronic tissue inflammation resulting from obesity is an underlying cause of insulin resistance and type 2 diabetes. But the mechanism by which this occurs has remained cloaked, until now.

Thousands of new microbial communities identified in human body

September 20, 2017
A new study of the human microbiome—the trillions of microbial organisms that live on and within our bodies—has analyzed thousands of new measurements of microbial communities from the gut, skin, mouth, and vaginal microbiome, ...

Study finds immune system is critical to regeneration

September 20, 2017
The answer to regenerative medicine's most compelling question—why some organisms can regenerate major body parts such as hearts and limbs while others, such as humans, cannot—may lie with the body's innate immune system, ...

Immune cells produce wound healing factor, could lead to new IBD treatment

September 20, 2017
Specific immune cells have the ability to produce a healing factor that can promote wound repair in the intestine, a finding that could lead to new, potential therapeutic treatments for inflammatory bowel disease (IBD), according ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.