Researchers discover potential way to repair brain damage in multiple sclerosis

October 31, 2012

Researchers at Oregon Health & Science University have discovered that blocking a certain enzyme in the brain can help repair the brain damage associated with multiple sclerosis and a range of other neurological disorders.

The discovery could have major implications for , complications from premature birth and other disorders and diseases caused by demyelination – a process where the insulation-like sheath surrounding nerve cells in the brain becomes damaged or destroyed. Demyelination disrupts the ability of nerve cells to communicate with each other, and produces a range of motor, sensory and cognitive problems in MS and other disorders.

The study was published this week in the online edition of the Annals of Neurology. The study was conducted by a team of researchers led by Larry Sherman, Ph.D., who is a professor of cell and development biology at OHSU and a senior scientist in the Division of Neuroscience at the Oregon National Primate Research Center.

"What this means is that we have identified a whole new target for drugs that might promote repair of the damaged brain in any disorder in which demyelination occurs," Sherman said. "Any kind of therapy that can promote remyelination could be an absolute life-changer for the millions of people suffering from MS and other related disorders."

Sherman's lab has been studying MS and other conditions where myelin is damaged for more than 14 years. In 2005, he and his research team discovered that a sugar molecule, called hyaluronic acid, accumulates in areas of damage in the brains of humans and animals with demyelinating brain and spinal cord lesions. Their findings at the time, published in Nature Medicine, suggested that hyaluronic acid itself prevented remyelination by preventing cells that form myelin from differentiating in areas of .

The new study shows that the hyaluronic acid itself does not prevent the differentiation of myelin-forming cells. Rather, breakdown products generated by a specific enzyme that chews up hyaluronic acid – called a hyaluronidase – contribute to the remyelination failure.

This enzyme is highly elevated in MS patient brain lesions and in the nervous systems of animals with an MS-like disease. The research team, which included OHSU pediatric neurologist Stephen Back, M.D., and OHSU neuroscientist Steve Matsumoto, Ph.D., found that by blocking hyaluronidase activity, they could promote myelin-forming cell differentiation and remyelination in the mice with the MS-like disease. Most significantly, the drug that blocked hyaluronidase activity led to improved nerve cell function.

The next step is to develop drugs that specifically target this enzyme. "The drugs we used in this study could not be used to treat patients because of the serious side effects they might cause," said Sherman. "If we can block the specific enzyme that is contributing to remyelination failure in the nervous system, it would likely cause few, if any, side effects."

Sherman and other researchers at the ONPRC are uniquely positioned to test newly developed drugs for their safety and effectiveness in nonhuman primates at ONPRC that spontaneously develop an MS-like disease. If they find a drug that is effective in these monkeys, they will be in a good position to test such drugs in patients.

Sherman cautioned that the discovery does not necessarily signal a cure for MS. Many other factors can contribute to the problems associated with MS and other demyelinating diseases, he said. But discovering the actions of this enzyme—and finding a way to block it—"could at the very least lead to new ways to promote the repair of brain and spinal cord damage either by targeting this enzyme alone or by inhibiting the enzyme in conjunction with other therapies."

Explore further: Study shows halting an enzyme can slow multiple sclerosis in mice

Related Stories

Study shows halting an enzyme can slow multiple sclerosis in mice

April 30, 2012
Researchers studying multiple sclerosis(MS) have long been looking for the specific molecules in the body that cause lesions in myelin, the fatty, insulating cells that sheathe the nerves. Nearly a decade ago, a group at ...

Hopes for reversing age-associated effects in MS patients

January 6, 2012
New research highlights the possibility of reversing ageing in the central nervous system for multiple sclerosis (MS) patients. The study is published today, 06 January, in the journal Cell Stem Cell.

Mayo Clinic uses new approach to reverse multiple sclerosis in mice models

June 28, 2012
Mayo Clinic researchers have successfully used smaller, folded DNA molecules to stimulate regeneration and repair of nerve coatings in mice that mimic multiple sclerosis (MS). They say the finding, published today in the ...

Researchers develop gene therapy to boost brain repair for demyelinating diseases

February 9, 2012
(Medical Xpress) -- Our bodies are full of tiny superheroes—antibodies that fight foreign invaders, cells that regenerate, and structures that ensure our systems run smoothly. One such structure is myelin—a material ...

Recommended for you

How electroconvulsive therapy relieves depression per animal experiments

December 18, 2017
In a study using genetically engineered mice, Johns Hopkins researchers have uncovered some new molecular details that appear to explain how electroconvulsive therapy (ECT) rapidly relieves severe depression in mammals, presumably ...

'Simple, but powerful' model reveals mechanisms behind neuron development

December 18, 2017
All things must come to an end. This is particularly true for neurons, especially the extensions called axons that transmit electrochemical signals to other nerve cells. Without controlled termination of individual neuron ...

Restless leg syndrome risk factor for heart-related death

December 18, 2017
Restless leg syndrome (RLS) is associated with increased risk of cardiovascular disease (CVD)-related death among women, according to research published online today (Dec. 15) in the January 2018 issue of Neurology, the medical ...

Study finds graspable objects grab attention more than images of objects do

December 15, 2017
Does having the potential to act upon an object have a unique influence on behavior and brain responses to the object? That is the question Jacqueline Snow, assistant professor of psychology at the University of Nevada, Reno, ...

Journaling inspires altruism through an attitude of gratitude

December 14, 2017
Gratitude does more than help maintain good health. New research at the University of Oregon finds that regularly noting feelings of gratitude in a journal leads to increased altruism.

Little understood cell helps mice see color

December 14, 2017
Researchers at the University of Colorado Anschutz Medical Campus have discovered that color vision in mice is far more complex than originally thought, opening the door to experiments that could potentially lead to new treatments ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.