Mayo Clinic uses new approach to reverse multiple sclerosis in mice models

June 28, 2012

Mayo Clinic researchers have successfully used smaller, folded DNA molecules to stimulate regeneration and repair of nerve coatings in mice that mimic multiple sclerosis (MS). They say the finding, published today in the journal PLoS ONE, suggests new possible therapies for MS patients.

"The problem has been to find a way to encourage the nervous system to regenerate its own myelin (the coating on the nerves) so can recover from an MS attack," says L. James Maher III, Ph.D., Mayo Clinic biochemist and senior author on the paper. "We show here that these small molecules, called aptamers, can stimulate repair in the mice we are studying."

More than 200,000 people have multiple sclerosis. There is no cure and no effective therapy to stop progression or repair damage to the that surrounds and protects the nerves. Without that protection, will be damaged, leading to declining mobility and cognitive function, and other debilitating complications.

MS researchers, including Mayo neurologist Moses Rodriguez, M.D., a co-author on this paper, have focused on monoclonal antibodies in mice to stimulate myelin repair. The Rodriguez and Maher teams, working together, have determined that the aptamers are not only effective, but they are easy and cheap to synthesize -- an important point for drug developers. They also are stable and not likely to cause an immune response. This new approach must be validated in other mouse models to see if it might be a candidate for human clinical trials.

The monoclonal antibodies used in earlier research are large and complex, but were shown to promote both cell signaling and remyelination of central nervous system lesions in mice. The aptamers used in this study are less than one-tenth the size of antibodies and are single-strands of DNA containing only 40 nucleotide units.

Explore further: Hopes for reversing age-associated effects in MS patients

Related Stories

Hopes for reversing age-associated effects in MS patients

January 6, 2012
New research highlights the possibility of reversing ageing in the central nervous system for multiple sclerosis (MS) patients. The study is published today, 06 January, in the journal Cell Stem Cell.

Hope for infant brain injuries like cerebral palsy as well as multiple sclerosis

June 27, 2011
(Medical Xpress) -- In a new study published in Nature Neuroscience, a team of researchers revealed the discovery of a key protein necessary for nerve repair and could lead to the development of a treatment for brain injuries ...

Recommended for you

Exosomes are the missing link to insulin resistance in diabetes

September 21, 2017
Chronic tissue inflammation resulting from obesity is an underlying cause of insulin resistance and type 2 diabetes. But the mechanism by which this occurs has remained cloaked, until now.

Thousands of new microbial communities identified in human body

September 20, 2017
A new study of the human microbiome—the trillions of microbial organisms that live on and within our bodies—has analyzed thousands of new measurements of microbial communities from the gut, skin, mouth, and vaginal microbiome, ...

Study finds immune system is critical to regeneration

September 20, 2017
The answer to regenerative medicine's most compelling question—why some organisms can regenerate major body parts such as hearts and limbs while others, such as humans, cannot—may lie with the body's innate immune system, ...

Immune cells produce wound healing factor, could lead to new IBD treatment

September 20, 2017
Specific immune cells have the ability to produce a healing factor that can promote wound repair in the intestine, a finding that could lead to new, potential therapeutic treatments for inflammatory bowel disease (IBD), according ...

As men's weight rises, sperm health may fall

September 20, 2017
(HealthDay)—A widening waistline may make for shrinking numbers of sperm, new research suggests.

New model may help science overcome the brain's fortress-like barrier

September 19, 2017
Scientists have helped provide a way to better understand how to enable drugs to enter the brain and how cancer cells make it past the blood brain barrier.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.