Realizing the potential of stem cell therapy

October 15, 2012

New animal studies provide additional support for investigating stem cell treatments for Parkinson's disease, head trauma, and dangerous heart problems that accompany spinal cord injury, according to research findings released today. The work, presented at Neuroscience 2012, the annual meeting of the Society for Neuroscience and the world's largest source of emerging news about brain science and health, shows scientists making progress toward using stem cell therapies to repair neurological damage.

The studies focused on using stem cells to produce neurons—essential, message-carrying cells in the brain and spinal cord. The loss of neurons and the connections they make for controlling critical bodily functions are the chief hallmarks of brain and and of neurodegenerative afflictions such as Parkinson's disease and ALS (), also known as Lou Gehrig's disease.

Today's new findings show that:

  • Neurons derived from human implanted in monkeys displaying symptoms of Parkinson's disease appear to have matured into healthy, dopamine-producing neurons without causing any adverse effects (Dustin Wakeman, PhD, abstract 314.11, see attached summary).
  • Life-threatening heart problems caused by spinal cord injury were partially remedied in rats treated with stem cells derived from the fetal brainstem. The findings suggest new avenues of research for repairing cardiovascular damage in human patients with spinal cord injuries (Armin Blesch, PhD, abstract 637.10, see attached summary).
  • Experiments in mice indicate it may be possible to activate dormant stem cells in the adult prompting the production of new neurons that might help repair damage caused by injury (Nathaniel Hartman, PhD, abstract 823.07, see attached summary).
Other recent findings discussed show that:
  • Scientists believe they have isolated a protein that can signal the to produce more neurons, raising the possibility that boosting production of the protein could help patients recover neurons lost to degenerative diseases like Parkinson's and ALS, or to trauma, such as spinal cord injury (Anthony Conway, abstract 823.04, see attached speaker's summary).
"As the fields of developmental and regenerative neuroscience mature, important progress is being made to begin to translate the promise of stem cell therapy into meaningful treatments for a range of well-defined neurological problems," said press conference moderator Jeffrey Macklis, MD, of Harvard University and the Harvard Stem Cell Institute, an expert on development and regeneration of the mammalian central nervous system. "Solid, rigorous, and well-defined pre-clinical work in animals can set the stage toward human clinical trials and effective future therapies."

Explore further: Evidence for spinal membrane as a source of stem cells may advance spinal cord treatment

Related Stories

Evidence for spinal membrane as a source of stem cells may advance spinal cord treatment

October 28, 2011
Italian and Spanish scientists studying the use of stem cells for treating spinal cord injuries have provided the first evidence to show that meninges, the membrane which envelops the central nervous system, is a potential ...

Recommended for you

Theory: Flexibility is at the heart of human intelligence

November 19, 2017
Centuries of study have yielded many theories about how the brain gives rise to human intelligence. Some neuroscientists think intelligence springs from a single region or neural network. Others argue that metabolism or the ...

Investigating patterns of degeneration in Alzheimer's disease

November 17, 2017
Alzheimer's disease (AD) is known to cause memory loss and cognitive decline, but other functions of the brain can remain intact. The reasons cells in some brain regions degenerate while others are protected is largely unknown. ...

Study may point to new treatment approach for ASD

November 17, 2017
Using sophisticated genome mining and gene manipulation techniques, researchers at Vanderbilt University Medical Center (VUMC) have solved a mystery that could lead to a new treatment approach for autism spectrum disorder ...

Neuroscientists find chronic stress skews decisions toward higher-risk options

November 16, 2017
Making decisions is not always easy, especially when choosing between two options that have both positive and negative elements, such as deciding between a job with a high salary but long hours, and a lower-paying job that ...

Paraplegic rats walk and regain feeling after stem cell treatment

November 16, 2017
Engineered tissue containing human stem cells has allowed paraplegic rats to walk independently and regain sensory perception. The implanted rats also show some degree of healing in their spinal cords. The research, published ...

Brain implant tested in human patients found to improve memory recall

November 15, 2017
(Medical Xpress)—A team of researchers with the University of Southern California and the Wake Forest School of Medicine has conducted experiments involving implanting electrodes into the brains of human volunteers to see ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.