Scientists discover gene behind rare disorders

October 9, 2012, McGill University

Scientists at the Montreal Neurological Institute and Hospital – The Neuro, McGill University working with a team at Oxford University have uncovered the genetic defect underlying a group of rare genetic disorders.

Using a new technique that has revolutionized genetic studies, the teams determined that mutations in the RMND1 gene were responsible for severe neurodegenerative disorders, in two infants, ultimately leading to their early death. Although the teams' investigations dealt with an infant, their discovery also has implications for understanding the causes of later-onset .

The RMND1 gene encodes a protein that is an important component of the machinery in mitochondria which generates the that all cells need to function. Mutations in genes affecting mitochondrial function are common causes of neurological and neuromuscular disorders in adults and children. It is estimated that one newborn baby out of 5000 is at risk for developing one of these disorders. Mortality among such cases is very high.

"Mitochondria are becoming a focus of research because it's clear they're involved in neurodegenerative disorders in a fairly big way," says Dr. Eric Shoubridge, an internationally recognized specialist on at The Neuro and lead author of the paper published in The . "For instance, we're finding that dysfunctional mitochondria may be at the heart of adult-onset disorders like Parkinson's and Alzheimer's disease."

Discovery of the mutations in the RMND1 gene involved using whole-exome sequencing at the McGill University and Genome Québec Innovation Centre. This technique allows all of the genes in the body that code for proteins to be sequenced and analyzed in a single experiment. At a cost of about $1000, whole-exome sequencing is much more economical than previous techniques in which lists of had to be screened in the search for mutations. The technique is poised to change the face of genetic diagnosis, making testing more efficient and available.

"Parents who have had a child with a mitochondrial disorder and who are hesitating to have another child now have the possibility to know the cause of the disease. With genetic information, they have reproductive options like in vitro fertilization," says Dr. Shoubridge. The discovery of the RMND1 gene's role sheds light on disorders of mitochondrial energy metabolism, but therapies to alleviate or cure such disorders remain elusive. Dr. Shoubridge is hopeful that the discovery will encourage pharmaceutical interest. "Drug companies are starting to be interested in rare diseases and metabolic disorders like this. They're picking some genes as potential drug candidates."

Explore further: Collaboration rapidly connects fly gene discovery to human disease

Related Stories

Collaboration rapidly connects fly gene discovery to human disease

March 20, 2012
A collaborative study by scientists at Baylor College of Medicine (BCM) and the Montreal Neurological Institute of McGill University, and published March 20 in the online, open access journal PLoS Biology, has discovered ...

Genetic map reveals clues to degenerative diseases

August 24, 2011
An international research team, spearheaded by Dr. Tim Mercer from The University of Queensland's Institute for Molecular Bioscience (IMB), has unlocked the blueprints to the ‘power plants' of the cell in an effort that ...

In next-gen DNA sequence, new answers to a rare and devastating disease

September 6, 2011
In Leigh syndrome, infants are born apparently healthy only to develop movement and breathing disorders that worsen over time, often leading to death by the age of 3. The problem is that the mitochondria responsible for powering ...

Recommended for you

Researchers identify gene responsible for mesenchymal stem cells' stem-ness'

January 22, 2018
Many doctors, researchers and patients are eager to take advantage of the promise of stem cell therapies to heal damaged tissues and replace dysfunctional cells. Hundreds of ongoing clinical trials are currently delivering ...

Genes contribute to biological motion perception and its covariation with autistic traits

January 22, 2018
Humans can readily perceive and recognize the movements of a living creature, based solely on a few point-lights tracking the motion of the major joints. Such exquisite sensitivity to biological motion (BM) signals is essential ...

Peers' genes may help friends stay in school, new study finds

January 18, 2018
While there's scientific evidence to suggest that your genes have something to do with how far you'll go in school, new research by a team from Stanford and elsewhere says the DNA of your classmates also plays a role.

Two new breast cancer genes emerge from Lynch syndrome gene study

January 18, 2018
Researchers at Columbia University Irving Medical Center and NewYork-Presbyterian have identified two new breast cancer genes. Having one of the genes—MSH6 and PMS2—approximately doubles a woman's risk of developing breast ...

A centuries-old math equation used to solve a modern-day genetics challenge

January 18, 2018
Researchers developed a new mathematical tool to validate and improve methods used by medical professionals to interpret results from clinical genetic tests. The work was published this month in Genetics in Medicine.

Can mice really mirror humans when it comes to cancer?

January 18, 2018
A new Michigan State University study is helping to answer a pressing question among scientists of just how close mice are to people when it comes to researching cancer.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.