Collaboration rapidly connects fly gene discovery to human disease

March 20, 2012

A collaborative study by scientists at Baylor College of Medicine (BCM) and the Montreal Neurological Institute of McGill University, and published March 20 in the online, open access journal PLoS Biology, has discovered that mutations in the same gene that encodes part of the vital machinery of the mitochondrion can cause neurodegenerative disorders in both fruit flies and humans.

Vafa Bayat in Dr. Hugo Bellen's lab at BCM, examined a series of mutant for defects leading to of photoreceptors in the eye. They identified mutations in the fruit fly gene that encodes a mitochondrial enzyme known as the mitochondrial methionyl-tRNA synthetase (Aats-met). These mutations also shortened life span and caused other problems, including reduced .

Mitochondria are the power plants of the cell, and have their own mechanism for producing proteins, separate from the main cellular protein-producing machinery. Defects in genes that encode have been previously associated with human metabolic and neurological disorders.

Dr. Bayat, a recent graduate from the Program in at BCM, searched the medical literature for genetic neurological disorders that were thought to be caused by defects in the region of our genome that contains the human version of the Aats-met gene, MARS2. One such disease, Autosomal Recessive Spastic Ataxia with frequent Leukoencephalopathy (ARSAL), had already been mapped to this region of the genome by Dr. Bernard Brais and his colleagues, but the precise gene responsible was not known. Ataxias such as ARSAL are progressive that cause coordination problems, leading to modified gait and speech as well as other problems.

Dr. Isabelle Thiffault from the Montreal team identified complex rearrangements of the genetic material in the MARS2 gene of ARSAL patients. These unusual rearrangements resulted in reduced levels of the MARS2 enzyme, reduced synthesis of proteins by the mitochondria, and impaired mitochondrial function. As with the fruit fly mutants, the patients' cells also had increased levels of reactive oxygen species, which can damage cells and their genetic material, and slow cell proliferation.

"We found the same defect in the mitochondrial respiratory chains in the human cells, which produced a lot of reactive oxygen species," said Dr. Bayat. "When we feed the fly larvae antioxidants, they suppress the degenerative phenotypes in flies." The ability of antioxidants to counteract the negative consequences of the mutant gene in flies raises the possibility that a related approach might have beneficial effects in human patients, though this remains to be determined.

"While the discovery of mutations in fly genes has been linked to human disease before, it has often taken many years to decades to accomplish this," said Dr. Bellen. "This was a relatively quick process. In summary, we have shown that you can use flies to identify fly mutants with neurodegenerative phenotypes and that these mutants can assist in the identification of human disease genes."

Explore further: Cell's 'battery' found to play central role in neurodegenerative disease

More information: Bayat V, Thiffault I, Jaiswal M, Tétreault M, Donti T, et al. (2012) Mutations in the Mitochondrial Methionyl-tRNA Synthetase Cause a Neurodegenerative Phenotype in Flies and a Recessive Ataxia (ARSAL) in Humans. PLoS Biol 10(3): e1001288. doi:10.1371/journal.pbio.1001288

Related Stories

Cell's 'battery' found to play central role in neurodegenerative disease

January 17, 2012
A devastating neurodegenerative disease that first appears in toddlers just as they are beginning to walk has been traced to defects in mitochondria, the 'batteries' or energy-producing power plants of cells.

Genetic map reveals clues to degenerative diseases

August 24, 2011
An international research team, spearheaded by Dr. Tim Mercer from The University of Queensland's Institute for Molecular Bioscience (IMB), has unlocked the blueprints to the ‘power plants' of the cell in an effort that ...

Mothers curse linked to male infertility

May 16, 2011
(Medical Xpress) -- Researchers have discovered the first real evidence of the 'mother's curse' and its connection to male infertility due to genetic mutations in mitochondria. Led by Dr. Damian Dowling from Monash University ...

Recommended for you

Scientists provide insight into genetic basis of neuropsychiatric disorders

July 21, 2017
A study by scientists at the Children's Medical Center Research Institute at UT Southwestern (CRI) is providing insight into the genetic basis of neuropsychiatric disorders. In this research, the first mouse model of a mutation ...

Scientists identify new way cells turn off genes

July 19, 2017
Cells have more than one trick up their sleeve for controlling certain genes that regulate fetal growth and development.

South Asian genomes could be boon for disease research, scientists say

July 18, 2017
The Indian subcontinent's massive population is nearing 1.5 billion according to recent accounts. But that population is far from monolithic; it's made up of nearly 5,000 well-defined sub-groups, making the region one of ...

Mutant yeast reveals details of the aberrant genomic machinery of children's high-grade gliomas

July 18, 2017
St. Jude Children's Research Hospital biologists have used engineered yeast cells to discover how a mutation that is frequently found in pediatric brain tumor high-grade glioma triggers a cascade of genomic malfunctions.

Late-breaking mutations may play an important role in autism

July 17, 2017
A study of nearly 6,000 families, combining three genetic sequencing technologies, finds that mutations that occur after conception play an important role in autism. A team led by investigators at Boston Children's Hospital ...

Newly discovered gene variants link innate immunity and Alzheimer's disease

July 17, 2017
Three new gene variants, found in a genome wide association study of Alzheimer's disease (AD), point to the brain's immune cells in the onset of the disorder. These genes encode three proteins that are found in microglia, ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.