Scientists identify mammal model of bladder regeneration

October 12, 2012

While it is well known that starfish, zebrafish and salamanders can re-grow damaged limbs, scientists understand very little about the regenerative capabilities of mammals. Now, researchers at Wake Forest Baptist Medical Center's Institute for Regenerative Medicine report on the regenerative process that enables rats to re-grow their bladders within eight weeks.

In , a peer-reviewed, online publication, the scientists characterize this unique model of regeneration with the goal of applying what they learn to human patients.

"A better understanding of the regenerative process at the molecular and is a key to more rapid progress in applying regenerative medicine to help patients," said George Christ, Ph.D., senior researcher and professor of regenerative medicine at Wake Forest Baptist.

In a previous study by Christ's team, research in showed that when about 75 percent of the animals' bladders were removed, they were able to regenerate a complete functional bladder within eight weeks. The current study focused on how the regeneration occurs.

"There is very little data on the mechanisms involved in in ," said Christ. "To our knowledge, bladder regeneration holds a unique position – there is no other mammalian organ capable of this type of regeneration."

The ability of the liver to grow in size when lobes are removed is sometimes referred to as regeneration, but this is a , said co-author Bryon Petersen, Ph.D., who was a professor of regenerative medicine at Wake Forest Baptist during the period the research occurred. Instead, through a proliferation of cells, the remaining tissue grows to compensate for the lost size. In contrast, the hallmark of true regeneration is following nature's "pattern" to exactly duplicate size, form and function, Petersen said.

"If we can understand the bladder's regenerative process, the hope is that we can prompt the regeneration of other organs and tissues where structure is important – from the intestine and spinal cord to the heart," said Petersen.

The current study showed that the animals' bodies responded to the bladder removal by increasing the rate at which certain cells divided and grew. The most notable proliferative response occurred initially in the urothelium, the layer of tissue that lines the bladder.

As the proliferative activity in the bladder lining waned, it continued elsewhere: in the fibrous band (lamina propria) that separates the bladder lining from the bladder muscles and in the bladder muscle itself.

The researchers have several theories about how the process works, said Christ. One possibility is that cells in the bladder lining transition and become a type of stem cell that can proliferate throughout the bladder. Other theories are that cells in the bladder lining signal other cells to replicate and that injury prompts stem cells to arrive through the blood stream to repair the bladder damage.

In future studies, the scientists will work to identify the exact regenerative process and will expand the work into mice. The ability to breed mice that lack specific genes will enable the team to explore how genes and proteins may affect the regenerative process and possibly help identify therapies to prompt regeneration.

Explore further: Lab-engineered muscle implants restore function in animals

Related Stories

Lab-engineered muscle implants restore function in animals

July 16, 2012
New research shows that exercise is a key step in building a muscle-like implant in the lab with the potential to repair muscle damage from injury or disease. In mice, these implants successfully prompt the regeneration and ...

Hopes for reversing age-associated effects in MS patients

January 6, 2012
New research highlights the possibility of reversing ageing in the central nervous system for multiple sclerosis (MS) patients. The study is published today, 06 January, in the journal Cell Stem Cell.

Recommended for you

Want to win at sports? Take a cue from these mighty mice

July 20, 2017
As student athletes hit training fields this summer to gain the competitive edge, a new study shows how the experiences of a tiny mouse can put them on the path to winning.

'Smart' robot technology could give stroke rehab a boost

July 19, 2017
Scientists say they have developed a "smart" robotic harness that might make it easier for people to learn to walk again after a stroke or spinal cord injury.

Engineered liver tissue expands after transplant

July 19, 2017
Many diseases, including cirrhosis and hepatitis, can lead to liver failure. More than 17,000 Americans suffering from these diseases are now waiting for liver transplants, but significantly fewer livers are available.

Lunatic Fringe gene plays key role in the renewable brain

July 19, 2017
The discovery that the brain can generate new cells - about 700 new neurons each day - has triggered investigations to uncover how this process is regulated. Researchers at Baylor College of Medicine and Jan and Dan Duncan ...

New animal models for hepatitis C could pave the way for a vaccine

July 19, 2017
They say that an ounce of prevention is worth a pound of cure. In the case of hepatitis C—a disease that affects nearly 71 million people worldwide, causing cirrhosis and liver cancer if left untreated—it might be worth ...

Omega-3 fatty acids fight inflammation via cannabinoids

July 18, 2017
Chemical compounds called cannabinoids are found in marijuana and also are produced naturally in the body from omega-3 fatty acids. A well-known cannabinoid in marijuana, tetrahydrocannabinol, is responsible for some of its ...

1 comment

Adjust slider to filter visible comments by rank

Display comments: newest first

VendicarD
not rated yet Oct 13, 2012
Odd isn't it that God, would choose to give rats the ability to grow new bladders, but not his prime creation - Man.

Was he drunk or something?

Perhaps God had to take a pee break while designing Man and left a few bits out, cause he was in a hurry.

Why didn't he correct for his mistakes?

Odd.

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.