Scientists create first mouse model of typhoid fever

October 25, 2012, Columbia University Medical Center

Columbia University Medical Center (CUMC) researchers have created the first true mouse model of typhoid infection. The development promises to advance the study of typhoid and the creation of new vaccines against the infection, which remains a major health threat in developing countries. The paper was published today in the online edition of the journal Cell.

"Vaccines are the most practical solution for preventing in the Third World. Unfortunately, existing typhoid vaccines are only modestly effective, leaving millions of people vulnerable to infection. With our new , the first of its kind, we have a powerful tool for investigating the disease and devising better vaccine strategies," said study co-leader Sankar Ghosh, PhD, the Silverstein and Hutt Family Professor and chair of & immunology at CUMC.

Typhoid is caused by the bacterium Salmonella typhi, which is spread through contaminated drinking water or food. While typhoid is rare in the United States, it is a common health problem in the developing world, affecting more than 2 million people each year and leading to 200,000 deaths. Symptoms of typhoid infection include high fever, fatigue, stomach pains, headache, and loss of appetite. Typhoid can be treated with antibiotics. Without therapy, the illness may last up to a month, with a fatality rate between 12 and 30 percent. There are two typhoid vaccines, with efficacy rates ranging from 50 to 80 percent.

Since mice and other laboratory animals are resistant to S. typhi, it has been difficult to develop and test new vaccination approaches. In the current experiment, Dr. Ghosh and his colleagues sought to determine why mice cannot be infected with S. typhi, with the ultimate goal of creating an animal model for studying the disease.

Evidence suggested that toll-like receptors (TLRs), which are expressed on the surface of key immune cells such as macrophages and dendritic cells, might be involved. Such cells are part of the innate immune response, the body's first-line defense against infectious microbes. For various reasons, the researchers zeroed in on a particular TLR: TLR11. One, this receptor is expressed all over the gastrointestinal lining, or epithelium, where S. typhi infection begins, and two, the receptor is found in mice, but not in humans. Also, in an earlier study, the CUMC team found that TLR11 protects mice infected with the Toxoplasma gondii, the parasite that causes toxoplasmosis in humans.

To determine whether TLR11 protects mice against S. typhi, Dr. Ghosh created a strain of mice that lack the receptor. When the TLR11 "knockout" mice were challenged with orally administered S. typhi, they developed typhoid-like symptoms. Next, the researchers demonstrated that the mice could be successfully immunized against S. typhi with a heat-killed vaccine.

The researchers also showed that this protection could be transferred by passive transfer—that is, by taking serum from a vaccinated mouse and giving it to a non-vaccinated mouse. "This is important for two reasons," said study co-leader Matthew S. Hayden, MD, PhD, assistant professor of dermatology and of microbiology & immunology at CUMC. "First, it demonstrated that these mice are capable of a robust response that includes protective antibodies. Second, passive immunization can be used to identify the protective component of the immune response and the parts of the bacteria that vaccination should target."

Other research teams have created small-animal models of typhoid, but all have serious drawbacks. The main drawback is that these models are chimeras, with a mix of mouse and human cells. While these models can be infected with S. typhi, only the human cells are actually infected. Thus, the models do not reflect the animals' true immune response. In addition, these models cannot be infected orally, only by systemic injection. "Normally S. typhi must breach the intestinal barrier and then disseminate within innate immune cells, including intestinal macrophages. Injecting the bacteria systemically bypasses these essential steps in the infection cycle. These are the steps that vaccination should block, however, because bacteria are injected in these other models, efficacy at these steps cannot be tested," said Dr. Hayden.

The CUMC team also discovered that TLR11 protects mice against S. typhi by recognizing and binding to flagellin, a protein found in the bacterium's flagellum, the whip-like tail that it uses to propel itself. The researchers are currently exploring whether TLR11 contributes to the failure of other flagellated bacteria to infect . "We are particularly excited that the TLR11 knockout may be an animal model for other enteropathogens"—pathogens that cause intestinal disease—"and potentially, other flagellated epithelial pathogens, including those that infect the lungs and urogenital tract. At present, there are no good mouse models for enterohemorrhagic E. coli, Vibrio cholera, Clostridium difficile, or chronic Pseudomonas aeruginosa," said Dr. Hayden.

Explore further: Surprising find helps explain why women get chronic chlamydia infections

Related Stories

Surprising find helps explain why women get chronic chlamydia infections

June 23, 2011
(Medical Xpress) -- Researchers at Duke University Medical Center used mice to learn why genital Chlamydia infection remains chronic in women. The findings have important implications for developing strategies to treat Chlamydia ...

Recommended for you

Anemia discovery offers new targets to treat fatigue in millions

January 22, 2018
A new discovery from the University of Virginia School of Medicine has revealed an unknown clockwork mechanism within the body that controls the creation of oxygen-carrying red blood cells. The finding sheds light on iron-restricted ...

More surprises about blood development—and a possible lead for making lymphocytes

January 22, 2018
Hematopoietic stem cells (HSCs) have long been regarded as the granddaddy of all blood cells. After we are born, these multipotent cells give rise to all our cell lineages: lymphoid, myeloid and erythroid cells. Hematologists ...

How metal scaffolds enhance the bone healing process

January 22, 2018
A new study shows how mechanically optimized constructs known as titanium-mesh scaffolds can optimize bone regeneration. The induction of bone regeneration is of importance when treating large bone defects. As demonstrated ...

Bioengineered soft microfibers improve T-cell production

January 18, 2018
T cells play a key role in the body's immune response against pathogens. As a new class of therapeutic approaches, T cells are being harnessed to fight cancer, promising more precise, longer-lasting mitigation than traditional, ...

Weight flux alters molecular profile, study finds

January 17, 2018
The human body undergoes dramatic changes during even short periods of weight gain and loss, according to a study led by researchers at the Stanford University School of Medicine.

Secrets of longevity protein revealed in new study

January 17, 2018
Named after the Greek goddess who spun the thread of life, Klotho proteins play an important role in the regulation of longevity and metabolism. In a recent Yale-led study, researchers revealed the three-dimensional structure ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.