Sensory neurons identified as critical to sense of touch

October 25, 2012, Duke University Medical Center

While studying the sense of touch, scientists at Duke Medicine have pinpointed specific neurons that appear to regulate perception.

The are characterized by thin spikes, and based on their volume, these protrusions determine the cells' sensitivity to force.

The findings in fruit , which appear in online Oct. 25, 2012, in the journal , demonstrate the first known function for the sensory and provide insights that could broaden the understanding of chronic pain syndromes in humans.

"On a molecular level, touch is the most poorly understood of the senses," said W. Daniel Tracey, PhD, associate professor of anesthesiology at Duke University Medical Center and study author. "While there are many types of touch sensor neurons, we still don't know how these neurons respond to force."

Duke researchers studied the larvae of to investigate their sense of touch. Like humans and other animals, larvae use touch to learn, explore their environment, sense danger, and more.

To elicit responses to touch, scientists stroked the larvae with the tip of an eyelash, and then measured .

The researchers identified several specialized sensory neurons, specifically the class II and class III multidentritic neurons, to be touch sensors of fruit fly larvae. Genetic silencing of these neurons impaired touch responses, while activation directly triggered responses.

The class III neurons are characterized by narrow spikes on the cells, called filopodia. These protrude from the surface of neurons and function as for cells to probe their environment. Neurons with more filopodia were more sensitive to force, while those with fewer filopodia were less sensitive to force.

No correlation was found between the length of the filopodia and sensitivity to touch.

Given that filopodia are necessary for touch, and their volume determines sensitivity, researchers also investigated whether certain genes play a role in the development of filopodia. Tracey and his colleagues conducted a genetic analysis and found that several ion channel gene families were important in the formation of filopodia. One gene, called the ripped pocket gene, was identified as necessary for gentle touch responses.

"Our discoveries in fruit fly larvae give us really important clues as to where we should look in the genes of mammals to better understand the sense of touch," Tracey continued. "We do not yet know if humans will present similar structures, but further studies may shed light on the sense of touch in our species."

Researchers hope that a better understanding of touch in humans will eventually help clinicians treat patients with sensory or pain issues. Some patients with chronic pain may respond to very light touch or pressure, inappropriately sending strong pain signals to brain.

"By learning more about touch sensing, we can begin to explore why these neurons become so responsive to stimuli, and how it is that these signals become painful. We might – in the long run – help people with issues in new ways by looking at the underlying molecular mechanisms," Tracey said.

Explore further: The molecular basis of touch sensation: New function of a well-known gene identified

Related Stories

The molecular basis of touch sensation: New function of a well-known gene identified

February 21, 2012
A gene known to control lens development in mice and humans is also crucial for the development of neurons responsible for mechanosensory function, as neurobiologists of the Max Delbrück Center for Molecular Medicine ...

Recommended for you

Research reveals atomic-level changes in ALS-linked protein

January 18, 2018
For the first time, researchers have described atom-by-atom changes in a family of proteins linked to amyotrophic lateral sclerosis (ALS), a group of brain disorders known as frontotemporal dementia and degenerative diseases ...

Fragile X finding shows normal neurons that interact poorly

January 18, 2018
Neurons in mice afflicted with the genetic defect that causes Fragile X syndrome (FXS) appear similar to those in healthy mice, but these neurons fail to interact normally, resulting in the long-known cognitive impairments, ...

How your brain remembers what you had for dinner last night

January 17, 2018
Confirming earlier computational models, researchers at University of California San Diego and UC San Diego School of Medicine, with colleagues in Arizona and Louisiana, report that episodic memories are encoded in the hippocampus ...

Recording a thought's fleeting trip through the brain

January 17, 2018
University of California, Berkeley neuroscientists have tracked the progress of a thought through the brain, showing clearly how the prefrontal cortex at the front of the brain coordinates activity to help us act in response ...

Midbrain 'start neurons' control whether we walk or run

January 17, 2018
Locomotion comprises the most fundamental movements we perform. It is a complex sequence from initiating the first step, to stopping when we reach our goal. At the same time, locomotion is executed at different speeds to ...

Miles Davis is not Mozart: The brains of jazz and classical pianists work differently

January 16, 2018
Keith Jarret, world-famous jazz pianist, once answered in an interview when asked if he would ever be interested in doing a concert where he would play both jazz and classical music: "No, that's hilarious. [...] It's like ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.