Finding triggers of birth defects in an embryo heart

October 30, 2012

Researchers at Case Western Reserve University have found a way to create three-dimensional maps of the stress that circulating blood places on the developing heart in an animal model – a key to understanding triggers of heart defects.

The team has begun testing the technology to uncover how alcohol, drugs and other factors set off events that result in defects found in newborn humans.

Passing drag on the that line the growing heart, a phenomenon called shear stress, which has been linked to changes in gene expression that results in defects, most often in the valves. But precisely how they're connected is unclear.

"Alcohol exposure may affect shear stress by modulating the heart rate, but it may also involve vigor and/or timing of the contraction," said Andrew Rollins, associate professor of biomedical engineering and senior author of the new study. "Now that we have the tool, we can start to figure that out."

"We're analyzing early and late development of the heart and trying to make the connections that result in valve dysfunction," said Lindsy M. Peterson, a PhD student in Rollins' lab and lead author. Their work is published in the current online issue of the Optical Society of America's journal Express.

The pair teamed with research assistant professor Michael W. Jenkins; senior research associate Shi Gu; Lee Barwick, an undergraduate researcher now at Brigham Young University; and Michiko Watanabe, a professor of pediatrics at Case Western Reserve School of Medicine.

To look at the structure of the developing heart and blood flow, the researchers modified a technology called Doppler optical coherence tomography. Called OCT for short, they shine an infrared laser on the heart.

The reflections measured at various depths are used to create a three-dimensional image in much the same manner submariners use sonar to picture their surroundings in the deep sea. But the researchers add the dimension of time, creating movies of blood flow through the structures, needed to map shear stress.

They take their first images at two days, during a stage of heart development called cardiac looping. This is when the simple straight tube that's an embryo heart turns clockwise into a helix, forming the beginnings of two atria and two ventricles. They take more images at three days and again at eight days, when the septum, the wall between the left and right sides of the heart, has formed.

Working with Ganga Karunamuni, a pediatrics research associate at the school of medicine, the team is now pursuing a slate of experiments testing the quail heart model's response to and will also test exposure to mental health drugs called selective serotonin receptor inhibitors. Alone or together, they can alter shear stress.

They are exposing the model to alcohol at a stage called gastrulation, when the embryo changes from two sheets of cells to a multi-layered organism.

This is a critical stage for induction of birth defects, Peterson said. In humans, it's an early stage when a woman may not know that she is pregnant.

Rollins said clinical applications are a long way off but the team has begun talking about possibilities.

"If it became feasible to screen a fetus for abnormal heart function," he said, "it might be possible to intervene with drugs, with gene therapy." Or, by using non-invasive pulses of infrared light to make the contract on demand – another technology the team is developing with clinical colleagues in Pediatric Cardiology– to prevent or treat defects before birth.

Explore further: Newborns should be screened for heart defects, study shows

Related Stories

Newborns should be screened for heart defects, study shows

May 2, 2012
There is now overwhelming evidence that all babies should be offered screening for heart defects at birth, according to a major new study published online in The Lancet.

Depressed heart function from stress improved by a simple sugar

July 19, 2011
Enhancing the production of ATP (adenosine triphosphate), an energy carrying molecule in heart cells, may shorten the heart’s recovery time after a heart attack or heart surgery.

New mouse model helps explain gene discovery in congenital heart disease

June 26, 2012
Scientists now have clues to how a gene mutation discovered in families affected with congenital heart disease leads to underdevelopment of the walls that separate the heart into four chambers. A Nationwide Children's Hospital ...

'ROCK' off: Study establishes molecular link between genetic defect and heart malformation

February 6, 2012
UNC researchers have discovered how the genetic defect underlying one of the most common congenital heart diseases keeps the critical organ from developing properly. According to the new research, mutations in a gene called ...

Recommended for you

Women exposed to smoke while in womb more likely to miscarry

July 13, 2017
Women exposed to cigarette smoke while in their mothers' wombs are more likely to experience miscarriage as adults, according to new research from the University of Aberdeen.

Lack of a hormone in pregnant mice linked to preeclampsia

June 30, 2017
(Medical Xpress)—A team of researchers from Singapore, the Netherlands and Turkey has isolated a hormone in pregnant mice that appears to be associated with preeclampsia—a pregnancy-related condition characterized by ...

Aspirin reduces risk of pre-eclampsia in pregnant women

June 28, 2017
Taking a low-dose aspirin before bed can reduce the risk of pre-eclampsia, which can cause premature birth and, in extreme cases, maternal and foetal death.

The biology of uterine fluid: How it informs the fetus of mom's world

June 22, 2017
A developing fetus bathes in a mixture of cellular secretions and proteins unique to its mother's uterus. Before fertilization, the pH of uterine fluid helps create a conducive environment for sperm migration, and afterward, ...

New clues in puzzle over pre-eclampsia and cholesterol regulation

June 21, 2017
Scientists studying a mystery link between the dangerous pregnancy complication pre-eclampsia and an increased risk of heart disease in later life for both mother and child have uncovered important new clues.

Are maternal hormones different when carrying a boy or a girl?

June 15, 2017
With advances in prenatal testing it's now possible to find out whether a pregnancy will result in a male or female baby as early as eight weeks' gestation.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.