ADHD medicine affects the brain's reward system

November 9, 2012, University of Copenhagen
ADHD medicine affects the brain's reward system
The scientists' model shows how some types of ADHD medicine influence the brain's reward system.

(Medical Xpress)—A group of scientists from the University of Copenhagen has created a model that shows how some types of ADHD medicine influence the brain's reward system. The model makes it possible to understand the effect of the medicine and perhaps in the longer term to improve the development of medicine and dose determination. The new research results have been published in the Journal of Neurophysiology.

In Denmark approximately 2-3 per cent of school-age children satisfy for ADHD, and therefore it is crucial to know how the medicine works. With a new mathematical of a tiny part of the brain region that registers reward and punishment, scientists from the University of Copenhagen are acquiring new knowledge about the effect of ADHD medicine. When reward and punishment signals run through the brain, the is always involved.

"It has been discussed for years whether treating ADHD with Ritalin and similar drugs affects the to any significant degree, simply because the dosage given to patients is so low. We are the first to show that some components of the dopamine signalling pathways are extremely sensitive to drugs like Ritalin. We have also developed a unified theory to describe the effect of such drugs on the dopamine signal," says Jakob Kisbye Dreyer, postdoctoral candidate at the Department of and Pharmacology, Faculty of Medical and Health Sciences, University of Copenhagen, where the model was developed.

He emphasises the importance of knowing exactly what happens during treatment with drugs like Ritalin. This is in order to develop better and more targeted medicine, as well as to understand the psychology underlying ADHD. The actions of human beings are motivated by an unconscious calculation of cost relative to expected gain. The scientists' results show that ADHD medicine specifically reduces signals about anticipated punishment.

Reward and punishment

In the brain, dopamine contributes to series of processes that control our behaviour. Actions such as eating, winning a competition, having sex or taking a narcotic drug increase dopamine release. Scientists think that dopamine helps motivate us to repeat actions that have previously been associated with reward.

"Control mechanisms in the brain help keep the dopamine signal in balance so we can register the tiny deviations that signal reward and punishment. We discovered while trying to describe these control mechanisms that our model can be used to examine the influence of Ritalin, for example, on the signal. Suddenly we could see that different pathways of the reward system are affected to different degrees by the medicine, and we could calculate at what dosage different parts of the signal would be changed or destroyed," says Jakob Kisbye Dreyer.

Different dosage, different effect

Drugs such as can have paradoxical effects: high dosage increases the patient's activity while low dosage reduces it. Therefore it can be a laborious process to find the right dosage for a patient.

"We can explain this double effect using our theory. The dopamine signal in the part of the brain that controls our motor behaviour is only affected at a higher dose that the dose usually prescribed for treatment. Also, our model shows that the threshold between a clinically effective dose and too high a dose is very low. That may explain why the small individual differences between patients have a big impact on treatment," says Jakob Kisbye Dreyer.

In the long term, the scientists hope that their new insight will help doctors determine the correct dose for each patient. The model can also help us understand what signals in the brain affect not only , but schizophrenia, Parkinson's disease and drug abuse as well.

Explore further: Mechanism of calming hyperactivity by psychostimulant drugs identified

More information: jn.physiology.org/content/earl … .00502.2012.abstract

Related Stories

Mechanism of calming hyperactivity by psychostimulant drugs identified

February 7, 2012
It has long been known that psychostimulant drugs have the paradoxical effect of reducing hyperactivity. [Psychostimulant drugs include methylphenidate – known by the trade names Ritalin, Concerta, and Methylin – ...

Patients' brains may adapt to ADHD medication

February 2, 2012
(Medical Xpress) -- New research reveals how the brain appears to adapt to compensate for the effects of long-term ADHD medication, suggesting why ADHD medication is more effective short-term than it is long-term. The study, ...

Recommended for you

Brain zaps may help curb tics of Tourette syndrome

January 16, 2018
Electric zaps can help rewire the brains of Tourette syndrome patients, effectively reducing their uncontrollable vocal and motor tics, a new study shows.

Researchers identify protein involved in cocaine addiction

January 16, 2018
Mount Sinai researchers have identified a protein produced by the immune system—granulocyte-colony stimulating factor (G-CSF)—that could be responsible for the development of cocaine addiction.

A 'touching sight': How babies' brains process touch builds foundations for learning

January 16, 2018
Touch is the first of the five senses to develop, yet scientists know far less about the baby's brain response to touch than to, say, the sight of mom's face, or the sound of her voice.

New study reveals why some people are more creative than others

January 16, 2018
Creativity is often defined as the ability to come up with new and useful ideas. Like intelligence, it can be considered a trait that everyone – not just creative "geniuses" like Picasso and Steve Jobs – possesses in ...

Neuroscientists suggest a model for how we gain volitional control of what we hold in our minds

January 16, 2018
Working memory is a sort of "mental sketchpad" that allows you to accomplish everyday tasks such as calling in your hungry family's takeout order and finding the bathroom you were just told "will be the third door on the ...

Miles Davis is not Mozart: The brains of jazz and classical pianists work differently

January 16, 2018
Keith Jarret, world-famous jazz pianist, once answered in an interview when asked if he would ever be interested in doing a concert where he would play both jazz and classical music: "No, that's hilarious. [...] It's like ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.