HCMV researchers utilize novel techniques to show preferential repair of the viral genome

November 29, 2012

A new study about Human Cytomegalovirus (HCMV), a leading cause of birth defects, reveals how the virus co-opts cells' abilities to repair themselves. In the paper published on November 29 in the Open Access journal PLOS Pathogens, O'Dowd et al. describe their utilization of a novel technique for the simultaneous evaluation of both the viral and host genomes in an infected cell.

Approximately 1% of babies born annually in the United States – about 40,000 – are infected with HCMV. Among them, some 4,000 are born with such conditions as loss of vision and hearing, cerebral palsy, mental retardation and microcephaly (small head size). Another 4,000 develop problems, such as progressive hearing loss, during childhood.

When HCMV infects a cell, it sets up centers inside the nucleus to replicate itself. The proteins that repair – including one known as the "guardian of the genome" – become trapped in these centers.

"If we could figure out how the virus interacted with these to keep them from repairing the cellular DNA, then we could target those specifically," says the study's senior corresponding author, associate professor of biological sciences at University of Idaho, Lee Fortunato, "Then the cellular DNA would be fine."

Fortunato hypothesized that the virus was taking over the cell's repair mechanisms and using them for itself, leaving the cells unable to fix themselves if they incurred damage or kill themselves to stop the spread of the virus. To confirm her hypothesis, Fortunato exposed infected cells to ultraviolet (UV) irradiation, which equally damaged the cellular and . She then used an agarose gel assay in a novel way to understand what happened as the cells' tried to operate.

In these assays, damaged DNA runs as a long smear when passing through the gel due to the presence of small fragments. As repair occurs, these small fragments come back together to form larger strands of DNA that stay near the top of the gel. But unlike typical studies that examine total DNA, both cellular and viral, in an infected cell together, Fortunato's test tracked viral and cellular DNA repair separately in each sample.

The test showed the cellular machinery repaired the viral DNA far more quickly and efficiently than cellular DNA. In fact, a day after being exposed to UV rays, viral DNA had been repaired and was back to normal. But the was still damaged.

"We've shown that, at least with UV radiation to an infected cell, the viral genome is preferentially repaired, but the cellular genome is not repaired," Fortunato said. "That could have ramifications for an infected fetus."

Fortunato's work could lead to an antiviral therapy and new understanding of the ways infections caused by various disease-causing organisms defeat cells' defenses.

More information: O'Dowd JM, Zavala AG, Brown CJ, Mori T, Fortunato EA (2012) HCMV-Infected Cells Maintain Efficient Nucleotide Excision Repair of the Viral Genome while Abrogating Repair of the Host Genome. PLoS Pathog 8(11): e1003038. doi:10.1371/journal.ppat.1003038

Related Stories

Recommended for you

Research examines lung cell turnover as risk factor and target for treatment of influenza pneumonia

July 24, 2017
Influenza is a recurring global health threat that, according to the World Health Organization, is responsible for as many as 500,000 deaths every year, most due to influenza pneumonia, or viral pneumonia. Infection with ...

Scientists propose novel therapy to lessen risk of obesity-linked disease

July 24, 2017
With obesity related illnesses a global pandemic, researchers propose in the Journal of Clinical Investigation using a blood thinner to target molecular drivers of chronic metabolic inflammation in people eating high-fat ...

Raccoon roundworm—a hidden human parasite?

July 24, 2017
The raccoon that topples your trashcan and pillages your garden may leave more than just a mess. More likely than not, it also contaminates your yard with parasites—most notably, raccoon roundworms (Baylisascaris procyonis).

Google searches can be used to track dengue in underdeveloped countries

July 20, 2017
An analytical tool that combines Google search data with government-provided clinical data can quickly and accurately track dengue fever in less-developed countries, according to new research published in PLOS Computational ...

MRSA emerged years before methicillin was even discovered

July 19, 2017
Methicillin resistant Staphylococcus aureus (MRSA) emerged long before the introduction of the antibiotic methicillin into clinical practice, according to a study published in the open access journal Genome Biology. It was ...

New test distinguishes Zika from similar viral infections

July 18, 2017
A new test is the best-to-date in differentiating Zika virus infections from infections caused by similar viruses. The antibody-based assay, developed by researchers at UC Berkeley and Humabs BioMed, a private biotechnology ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.