MRSA outbreak mapped by DNA sequencing

November 13, 2012

Scientists have used DNA sequencing for the first time to effectively track the spread of, and ultimately contain, an outbreak of methicillin-resistant Staphylococcus aureus (MRSA), according to new research published in The Lancet Infectious Diseases.

The technique allowed researchers to map and control an MRSA outbreak in a special care baby unit (SCBU) much more effectively than traditional infection control techniques alone would have allowed, leading to hopes that in future, the management of MRSA and other harmful bacterial infections could be vastly improved by the routine use of DNA sequencing technologies.

Researchers from the Wellcome Trust Sanger Institute, the University of Cambridge and Cambridge University Hospitals initially performed a type of DNA sequencing known as whole-genome sequencing on MRSA isolates taken from 12 babies known to have been carrying MRSA during a 6 month period in 2011.

When the first arose, an infection-control team working in the hospital suspected that the cases were linked, but this could not be proven using conventional methods to track and characterise outbreaks, nor was it clear how the infection was spreading and what its source might be. In an attempt to halt the spread of infection, the infection control team recommended standard measures of decolonisation treatment to eradicate MRSA from carriers and a deep clean of the ward where the infections had occurred.

The video will load shortly

When the scientists retrospectively performed DNA sequencing on these MRSA isolates, they were able to confirm that the MRSA strains were closely related, and that the MRSA cases observed were therefore part of an . Moreover, by widening their analysis to include samples from parents and visitors to GP's surgeries, they were able to determine that the outbreak had spread into the community, infecting twice as many people as previously suspected.

While this was taking place, the hospital infection-control team identified a new case of MRSA carriage in the special care baby unit, more than 2 months after the last MRSA-positive patient had left the unit and the ward had been deep-cleaned. The researchers used rapid DNA sequencing to show that the new case of MRSA was related to the earlier outbreak, leading them to hypothesise that a member of staff in the hospital might be unwittingly carrying the MRSA strain identified months earlier, allowing the same strain to infect another patient months after the initial outbreak and infection control measures.

As a result of this, 154 health care workers were screened for MRSA, and one member of staff was found to be carrying the same strain of MRSA linked to the outbreaks. The worker was then treated to eradicate their MRSA carriage, and the outbreak was contained.

According to Professor Julian Parkhill, lead author from the Wellcome Trust Sanger Institute in Cambridge, UK, "Routine use of DNA sequencing could have detected this MRSA outbreak 6 months earlier than standard techniques, and might well have prevented substantial illness and costs arising from MRSA transmission and subsequent infection. Whole-genome sequencing of MRSA could make an important contribution to investigation and practice, allowing quicker identification, tracking and isolation of outbreaks than is currently possible."

This is the first study in which DNA sequencing has been used alongside conventional methods in real time, allowing scientists to directly compare the two and to understand how DNA sequencing might be effectively used alongside existing techniques in future.

"Before this technology can be used in routine clinical practice, we will require automated tools that interpret sequence data and provide information to healthcare workers and people without specialist sequencing knowledge" says Professor Sharon Peacock, lead author from the University of Cambridge, who adds that "we are currently working on such a system".

Writing in a linked Comment, Dr Binh Diep, from the University of California, San Francisco, USA, states that, "The advent of high-throughput whole-genome sequencing has the potential to revolutionise outbreak investigations by providing a substantial advance in our ability to discriminate between different , compared with traditional molecular methods."

Explore further: Tracking MRSA in real time: Study highlights benefits of rapid whole-genome sequencing

More information: Simon R. Harris, Edward J.P. Cartwright, M. Estée Török, Matthew T.G. Holden, Nicholas M. Brown, Amanda L. Ogilvy-Stuart, Matthew J. Ellington, Michael A. Quail, Stephen D. Bentley, Julian Parkhill, Sharon J. Peacock (2012). 'Using whole genome sequencing to dissect the cause and effect of a meticillin-resistant Staphylococcus aureus outbreak: a descriptive study' http://www.thelancet.com/journals/laninf/article/PIIS1473-3099(12)70268-2/abstract

Related Stories

Tracking MRSA in real time: Study highlights benefits of rapid whole-genome sequencing

June 13, 2012
In a new study released today in New England Journal of Medicine, researchers demonstrate that whole genome sequencing can provide clinically relevant data on bacterial transmission within a timescale that can influence infection ...

New type of MRSA in hospitalized patients probably of animal origin

June 2, 2011
A distinctly new type of methicillin resistant Staphylococcus aureus (MRSA) that is not detected by traditional genetic screening methods has been discovered in patients in Irish hospitals according to research to be published ...

MRSA spread could be tracked through Google search patterns

May 23, 2011
(PhysOrg.com) -- Google searches are apparently providing much more important information than just a typical search for a local restaurant or research for a term paper. Google trends are also providing much more information ...

Recommended for you

Google searches can be used to track dengue in underdeveloped countries

July 20, 2017
An analytical tool that combines Google search data with government-provided clinical data can quickly and accurately track dengue fever in less-developed countries, according to new research published in PLOS Computational ...

MRSA emerged years before methicillin was even discovered

July 19, 2017
Methicillin resistant Staphylococcus aureus (MRSA) emerged long before the introduction of the antibiotic methicillin into clinical practice, according to a study published in the open access journal Genome Biology. It was ...

New test distinguishes Zika from similar viral infections

July 18, 2017
A new test is the best-to-date in differentiating Zika virus infections from infections caused by similar viruses. The antibody-based assay, developed by researchers at UC Berkeley and Humabs BioMed, a private biotechnology ...

'Superbugs' study reveals complex picture of E. coli bloodstream infections

July 18, 2017
The first large-scale genetic study of Escherichia coli (E. coli) cultured from patients with bloodstream infections in England showed that drug resistant 'superbugs' are not always out-competing other strains. Research by ...

Ebola virus can persist in monkeys that survived disease, even after symptoms disappear

July 17, 2017
Ebola virus infection can be detected in rhesus monkeys that survive the disease and no longer show symptoms, according to research published by Army scientists in today's online edition of the journal Nature Microbiology. ...

Mountain gorillas have herpes virus similar to that found in humans

July 13, 2017
Scientists from the University of California, Davis, have detected a herpes virus in wild mountain gorillas that is very similar to the Epstein-Barr virus in humans, according to a study published today in the journal Scientific ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.