Pig tissue scaffolding allows hearts to be rebuilt post-implant

November 13, 2012 by Kevin Hattori, American Technion Society
Prof. Marcelle Machluf

(Medical Xpress)—Using tissue from pigs, scientists at the Technion-Israel Institute of Technology have created a "scaffold" that preserves the infrastructure of natural blood vessels and supports human stem cells. The result a rebuilt heart that could be used as a post-heart attack implant.

To create their scaffold, the team led by Prof. Marcelle Machluf, of the Faculty of Biotechnology and Food Engineering, used extracellular matrix proteins, the outer part of animal tissue that, among other functions, provides structural support to cells. They made sure their matrix was as free as possible from components that could provoke immunological rejection, while still retaining its inherent vasculature.

"We used pig heart tissue, as it is physiologically similar to the human heart," said Prof. Machluf. "Its is 98 percent identical to human heart tissue, so the scaffold (and other transplanted pig organs) is not rejected by the ."

Heart attacks are a leading cause of death and disability in the Western world. When they strike, the blood supply to the myocardium (the middle of the three layers forming the wall of the heart) is impaired and, as a result, a scar is formed in the affected area. Since it does not have the ability to pump blood, the significantly burdens the healthy parts of the heart.

Current clinical treatments for heart attacks employ drugs and/or surgery to improve after a heart attack, and to prevent any recurrence. But these treatments cannot change scar tissue into healthy myocardial tissue, so the only current options for end-stage are or pacemakers. Both options are costly and limited in terms of availability.

Use of scaffolds for replacing damaged tissue with healthy transplanted cells should have biomechanical properties that are compatible with those of the myocardium, support the cells and the rehabilitating tissue, provide the required biochemical signals, and break down as the natural extracellular matrix is secreted.

The findings were published in the October issue of Tissue Engineering.

The research was financed by Israel's Office of the Chief Scientist of the Ministry of Industry and Trade and was conducted in cooperation with Singapore's research agency.

Explore further: Genetically engineered cardiac stem cells repaired damaged mouse heart

Related Stories

Genetically engineered cardiac stem cells repaired damaged mouse heart

July 19, 2011
Genetically engineered human cardiac stem cells helped repair damaged heart tissue and improved function after a heart attack, in a new animal study.

Recommended for you

LincRNAs identified in human fat tissue

June 21, 2018
A large team of researchers from the U.S. and China has succeeded in identifying a number of RNA fragments found in human fat tissue. In their paper published in the journal Science Translational Medicine the group describes ...

Scientists solve the case of the missing subplate, with wide implications for brain science

June 21, 2018
The disappearance of an entire brain region should be cause for concern. Yet, for decades scientists have calmly maintained that one brain area, the subplate, simply vanishes during the course of human development. Recently, ...

Key molecule of aging discovered

June 21, 2018
Every cell and every organism ages sooner or later. But why is this so? Scientists at the German Cancer Research Center in Heidelberg have now discovered for the first time a protein that represents a central switching point ...

Compound made inside human body stops viruses from replicating

June 20, 2018
The newest antiviral drugs could take advantage of a compound made not by humans, but inside them. A team of researchers has identified the mode of action of viperin, a naturally occurring enzyme in humans and other mammals ...

Research reveals zero proof probiotics can ease your anxiety

June 20, 2018
If you're expecting probiotics to reduce your anxiety, it might be time to put down that yogurt spoon—or supplement bottle—and call a professional instead.

Long-term estrogen therapy changes microbial activity in the gut, study finds

June 20, 2018
Long-term therapy with estrogen and bazedoxifene alters the microbial composition and activity in the gut, affecting how estrogen is metabolized, a new study in mice found.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.