Pig tissue scaffolding allows hearts to be rebuilt post-implant

November 13, 2012 by Kevin Hattori, American Technion Society
Prof. Marcelle Machluf

(Medical Xpress)—Using tissue from pigs, scientists at the Technion-Israel Institute of Technology have created a "scaffold" that preserves the infrastructure of natural blood vessels and supports human stem cells. The result a rebuilt heart that could be used as a post-heart attack implant.

To create their scaffold, the team led by Prof. Marcelle Machluf, of the Faculty of Biotechnology and Food Engineering, used extracellular matrix proteins, the outer part of animal tissue that, among other functions, provides structural support to cells. They made sure their matrix was as free as possible from components that could provoke immunological rejection, while still retaining its inherent vasculature.

"We used pig heart tissue, as it is physiologically similar to the human heart," said Prof. Machluf. "Its is 98 percent identical to human heart tissue, so the scaffold (and other transplanted pig organs) is not rejected by the ."

Heart attacks are a leading cause of death and disability in the Western world. When they strike, the blood supply to the myocardium (the middle of the three layers forming the wall of the heart) is impaired and, as a result, a scar is formed in the affected area. Since it does not have the ability to pump blood, the significantly burdens the healthy parts of the heart.

Current clinical treatments for heart attacks employ drugs and/or surgery to improve after a heart attack, and to prevent any recurrence. But these treatments cannot change scar tissue into healthy myocardial tissue, so the only current options for end-stage are or pacemakers. Both options are costly and limited in terms of availability.

Use of scaffolds for replacing damaged tissue with healthy transplanted cells should have biomechanical properties that are compatible with those of the myocardium, support the cells and the rehabilitating tissue, provide the required biochemical signals, and break down as the natural extracellular matrix is secreted.

The findings were published in the October issue of Tissue Engineering.

The research was financed by Israel's Office of the Chief Scientist of the Ministry of Industry and Trade and was conducted in cooperation with Singapore's research agency.

Explore further: Genetically engineered cardiac stem cells repaired damaged mouse heart

Related Stories

Genetically engineered cardiac stem cells repaired damaged mouse heart

July 19, 2011
Genetically engineered human cardiac stem cells helped repair damaged heart tissue and improved function after a heart attack, in a new animal study.

Recommended for you

Human 'chimeric' cells restore crucial protein in Duchenne muscular dystrophy

March 16, 2018
Cells made by fusing a normal human muscle cell with a muscle cell from a person with Duchenne muscular dystrophy —a rare but fatal form of muscular dystrophy—were able to significantly improve muscle function when implanted ...

Team develops 3-D tissue model of a developing human heart

March 16, 2018
The heart is the first organ to develop in the womb and the first cause of concern for many parents.

Democratizing science: Researchers make neuroscience experiments easier to share, reproduce

March 16, 2018
Over the past few years, scientists have faced a problem: They often cannot reproduce the results of experiments done by themselves or their peers.

Genetic variant discovery to help asthma sufferers

March 16, 2018
Research from the University of Liverpool, published today in Lancet Respiratory Medicine, identifies a genetic variant that could improve the safety and effectiveness of corticosteroids, drugs that are used to treat a range ...

Researchers say use of artificial intelligence in medicine raises ethical questions

March 15, 2018
In a perspective piece, Stanford researchers discuss the ethical implications of using machine-learning tools in making health care decisions for patients.

Study identifies potential drug for treatment of debilitating inherited neurological disease

March 15, 2018
St. Jude Children's Research Hospital scientists have demonstrated in mouse studies that the neurological disease spinal bulbar muscular atrophy (SBMA) can be successfully treated with drugs. The finding paves the way for ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.