Scientists find regulator linking exercise to bigger, stronger muscles

December 6, 2012

Scientists at Dana-Farber Cancer Institute have isolated a previously unknown protein in muscles that spurs their growth and increased power following resistance exercise. They suggest that artificially raising the protein's levels might someday help prevent muscle loss caused by cancer, prolonged inactivity in hospital patients, and aging.

Mice given extra doses of the protein gained muscle mass and strength, and rodents with cancer were much less affected by cachexia, the loss of muscle that often occurs in , according to the report in the Dec. 7 issue of the journal Cell.

"This is basic science at present," commented Jorge Ruas, PhD, first author of the report. "But if you could find a way to elevate levels of this protein, that would be very exciting. For example, you might be able to reduce muscle wasting in patients in intensive care units whose muscles atrophy because of prolonged ." Other applications, he said, might be in disorders such as muscular dystrophy and the gradual loss of muscle mass from aging.

Bruce Spiegelman, PhD, the senior author, led the Dana-Farber team that identified the protein, PGC-1 alpha-4, in skeletal muscle and said it is present in mice and humans. , such as weight lifting, causes a rise in PGC-1 alpha-4, which in turn triggers that make muscles larger and more powerful, said the researchers.

The protein is an isoform, or slight variant, of PGC-1 alpha, an important regulatory of that is turned on by forms of exercise, such as running, that increase muscular endurance rather than size. "It's pretty amazing that two proteins made by a single gene regulate the effects of both types of exercise," commented Spiegelman.

The researchers found that the new protein controls the activity of two previously known involved in muscle growth. A rise in PGC-1 alpha-4 with exercise increases activity of a protein called IGF1 (insulin-like growth factor 1), which facilitates muscle growth. At the same time, PGC-1alpha4 also represses another protein, myostatin, which normally restricts muscle growth. In effect, PGC-1 alpha-4 presses the accelerator and removes the brake to enable exercised muscles to gain mass and strength.

"All of our muscles have both positive and negative influences on growth," Spiegelman explained. "This protein (PGC-1 alpha-4) turns down myostatin and turns up IGF1."

Several experiments demonstrated the muscle-enhancing effects of the novel protein. The investigators used virus carriers to insert PGC-1 alpha-4 into the leg muscle of mice and found that within several days their muscle fibers were 60 percent bigger compared to untreated mice. They also engineered mice to have more PGC-1 alpha-4 in their muscles than normal mice who were not exercising. Tests showed that the treated mice were 20 percent stronger and more resistant to fatigue than the controls; in addition, they were leaner than their normal counterparts.

Mice engineered to have extra PGC-1 alpha-4 showed "dramatic resistance" to cancer-related muscle wasting, the scientists found. The mice lost only 10 percent mass in a leg muscle compared to a 29 percent loss in mice with cancer that did not have additional PGC-1 alpha-4, according to the report. The altered mice were also stronger and more active than the normal mice.

Explore further: Scientists find molecular link to obesity and insulin resistance in mice

Related Stories

Scientists find molecular link to obesity and insulin resistance in mice

September 27, 2012
Flipping a newly discovered molecular switch in white fat cells enabled mice to eat a high-calorie diet without becoming obese or developing the inflammation that causes insulin resistance, report scientists from Dana-Farber ...

No workout? No worries: Scientists prevent muscle loss in mice, despite disease and inactivity

February 29, 2012
If you want big muscles without working out, there's hope. In the March 2012 print issue of the FASEB Journal, scientists from the University of Florida report that a family of protein transcription factors, called "Forkhead ...

New study finds a genetic basis for muscle endurance in animal study

July 18, 2011
Researchers at the Perelman School of Medicine at the University of Pennsylvania have identified a gene for endurance, or more precisely, a negative regulator of it. Not having the gene relates to greater endurance in the ...

Recommended for you

New vaccine production could improve flu shot accuracy

July 24, 2017
A new way of producing the seasonal flu vaccine could speed up the process and provide better protection against infection.

Molecular hitchhiker on human protein signals tumors to self-destruct

July 24, 2017
Powerful molecules can hitch rides on a plentiful human protein and signal tumors to self-destruct, a team of Vanderbilt University engineers found.

Researchers develop new method to generate human antibodies

July 24, 2017
An international team of scientists has developed a method to rapidly produce specific human antibodies in the laboratory. The technique, which will be described in a paper to be published July 24 in The Journal of Experimental ...

A sodium surprise: Engineers find unexpected result during cardiac research

July 20, 2017
Irregular heartbeat—or arrhythmia—can have sudden and often fatal consequences. A biomedical engineering team at Washington University in St. Louis examining molecular behavior in cardiac tissue recently made a surprising ...

Want to win at sports? Take a cue from these mighty mice

July 20, 2017
As student athletes hit training fields this summer to gain the competitive edge, a new study shows how the experiences of a tiny mouse can put them on the path to winning.

'Smart' robot technology could give stroke rehab a boost

July 19, 2017
Scientists say they have developed a "smart" robotic harness that might make it easier for people to learn to walk again after a stroke or spinal cord injury.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.