Study: Even the smallest stroke can damage brain tissue, impair cognitive function

December 16, 2012, University of California - San Diego
A single arteriole, highlighted in yellow, dives from the surface of the brain at the top of the image to penetrate a column of brain tissue. Blocking just one such vessel can damage the brain and lead to a focused cognitive defect, a new study has shown. Credit: David Kleinfeld Lab, UC San Diego

Blocking a single tiny blood vessel in the brain can harm neural tissue and even alter behavior, a new study from the University of California, San Diego has shown. But these consequences can be mitigated by a drug already in use, suggesting treatment that could slow the progress of dementia associated with cumulative damage to miniscule blood vessels that feed brain cells. The team reports their results in the December 16 advance online edition of Nature Neuroscience.

"The brain is incredibly dense with . It was surprising that blocking one small vessel could have a discernable impact on the behavior of a rat," said Andy Y. Shih, lead author of the paper who completed this work as a in physics at UC San Diego. Shih is now an assistant professor at the Medical University of South Carolina.

Working with rats, Shih and colleagues used to clot blood at precise points within small that dive from the surface of the brain to penetrate . When they looked at the brains up to a week later, they saw reminiscent of the widespread damage often seen when the brains of patients with dementia are examined as a part of an autopsy.

These micro-lesions are too small to be detected with conventional , which have a resolution of about a millimeter. Nearly two dozen of these small vessels enter the brain from a square millimeter area of the surface of the brain.

"It's controversial whether that sort of damage has consequences, although the tide of evidence has been growing as human diagnostics improve," said David Kleinfeld, professor of physics and neurobiology, who leads the research group.

To see whether such minute damage could change behavior, the scientists trained thirsty rats to leap from one platform to another in the dark to get water.

The rats readily jump if they can reach the second platform with a paw or their snout, or stretch farther to touch it with their whiskers. Many rats can be trained to rely on a single whisker if the others are clipped, but if they can't feel the far platform, they won't budge.

"The line up in rows and each one is linked to a specific spot in the brain," Shih said. "By training them to use just one whisker, we were able to distill a behavior down to a very small part of the brain."

When Shih blocked single microvessels feeding a column of that respond to signals from the remaining whisker, the rats still crossed to the far platform when the gap was small. But when it widened beyond the reach of their snouts, they quit.

The FDA-approved drug memantine, prescribed to slow one aspect of memory decline associated with Alzheimer's disease, ameliorated these effects. Rats that received the drug jumped whisker-wide gaps, and their brains showed fewer signs of damage.

"This data shows us, for the first time, that even a tiny stroke can lead to disability," said Patrick D. Lyden, a co-author of the study and chair of the department of neurology at Cedars-Sinai Medical Center in Los Angeles. "I am afraid that tiny strokes in our patients contribute—over the long term—to illness such as dementia and Alzheimer's disease," he said, adding that "better tools will be required to tell whether human patients suffer memory effects from the smallest strokes."

"We used powerful tools from biological physics, many developed in Kleinfeld's laboratory at UC San Diego, to link stroke to dementia on the unprecedented small scale of single vessels and cells," Shih said. "At my new position at MUSC, I plan to work on ways to improve the detection of micro-lesions in human patients with MRI. This way clinicians may be able to diagnose and treat dementia earlier." —Susan Brown

Explore further: New clue to brain bleeding after stroke treatment

Related Stories

New clue to brain bleeding after stroke treatment

October 17, 2011
The only medication currently approved for stroke treatment – tissue plasminogen activator (tPA), which dissolves blood clots – is associated with an increased risk of bleeding in the brain, particularly among patients ...

Recommended for you

New neuron-like cells allow investigation into synthesis of vital cellular components

January 22, 2018
Neuron-like cells created from a readily available cell line have allowed researchers to investigate how the human brain makes a metabolic building block essential for the survival of all living organisms. A team led by researchers ...

Finding unravels nature of cognitive inflexibility in fragile X syndrome

January 22, 2018
Mice with the genetic defect that causes fragile X syndrome (FXS) learn and remember normally, but show an inability to learn new information that contradicts what they initially learned, shows a new study by a team of neuroscientists. ...

Epilepsy linked to brain volume and thickness differences

January 22, 2018
Epilepsy is associated with thickness and volume differences in the grey matter of several brain regions, according to new research led by UCL and the Keck School of Medicine of USC.

Research reveals atomic-level changes in ALS-linked protein

January 18, 2018
For the first time, researchers have described atom-by-atom changes in a family of proteins linked to amyotrophic lateral sclerosis (ALS), a group of brain disorders known as frontotemporal dementia and degenerative diseases ...

Fragile X finding shows normal neurons that interact poorly

January 18, 2018
Neurons in mice afflicted with the genetic defect that causes Fragile X syndrome (FXS) appear similar to those in healthy mice, but these neurons fail to interact normally, resulting in the long-known cognitive impairments, ...

How your brain remembers what you had for dinner last night

January 17, 2018
Confirming earlier computational models, researchers at University of California San Diego and UC San Diego School of Medicine, with colleagues in Arizona and Louisiana, report that episodic memories are encoded in the hippocampus ...

1 comment

Adjust slider to filter visible comments by rank

Display comments: newest first

gralp
1 / 5 (1) Dec 17, 2012
Pull out the wings of a fly and it won't dare to soar into the sky any more. Is it worth a Nobel, or Ig Noble?

Whilst the objective of this research is indisputable, the methods of proof are naive at best, and the use of "powerful tools from biological physics" hardly makes the "discovery" more convincing.

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.