Discovery of new class of damage-prone DNA regions could lead to better cancer treatments

January 24, 2013, Cell Press
Replication-induced DNA damage is a potent source of genome instability; however the affected loci are largely uncharacterized. Using high throughput protein-DNA association and transcriptome assays, Barlow, Faryabi et al. generate a genome-wide map of hydroxyurea-induced DNA damage sites. These sites occur soon after replication initiation (early replication fragile sites, or ERFS), unlike well characterized common fragile sites (CFS). ERFS correlate with high transcription, and can arise from the collision of transcription and replication machineries. Credit: Cell, Nussenzweig et al.

Cancer is thought to arise from DNA damage at fragile sites in the genome. A study published by Cell Press on January 24th in the journal Cell reveals a new class of fragile sites that contributes to DNA alterations in a type of blood cancer called B cell lymphoma The findings could lead to the development of more effective treatments for B cell lymphoma and potentially other cancers.

"This study describes an underlying mechanism of genome instability in B cell lymphoma that could not be previously explained," says senior study author André Nussenzweig of the National Cancer Institute. "The phenomena that we show in mice may be important for cancer initiation and progression in humans."

can occur at fragile sites when DNA is replicated prior to cell division, and regions that are hard to copy, such as repetitive sequences, are especially prone to double-strand breaks. Because called B cell lymphocytes are among the most rapidly dividing cells, they are at great risk for replication-induced DNA damage. In addition, in the nonreplicative stage of the cell cycle, B cell lymphocytes can acquire double-strand breaks through the action of an enzyme that helps build called activation-induced cytidine deaminase (AID), which causes a lot of collateral damage in the genome, storing up problems that get exacerbated during replication. But AID activity cannot account for many mutations associated with B cell lymphoma.

In the new study, Nussenzweig and his team uncovered an AID-independent source of DNA breaks associated with replication called early replicating fragile sites (ERFSs). Applying a genome-wide sequencing approach to mouse B cell lymphocytes, they found that DNA damage occurs at ERFSs during early stages of replication. Moreover, these sites overlapped significantly with associated with , suggesting that ERFSs are a major feature of the mutational landscape of this type of cancer and possibly other cancers.

"Cancer is an evolving disease, and DNA damage associated with replication is one of the processes occurring in malignant cells to help them adapt and survive when a tumor metastasizes," Nussenzweig says. "Therefore, understanding how replication-induced DNA damage occurs in both healthy and cancer cells may provide a better understanding of how cancer arises and help in designing more effective treatments."

Explore further: Scientists identify molecular basis for DNA breakage

More information: Cell, Nussenzweig et al.: "A novel class of early replicating fragile sites that contribute to genome instability in B cell lymphomas." dx.doi.org/10.1016/j.cell.2013.01.006

Related Stories

Scientists identify molecular basis for DNA breakage

July 19, 2011
Scientists from the Hebrew University have identified the molecular basis for DNA breakage, a hallmark of cancer cells. The findings of this research have just been published in the journal Molecular Cell.

Researchers demonstrate why DNA breaks down in cancer cells

May 3, 2011
Damage to normal DNA is a hallmark of cancer cells. Although it had previously been known that damage to normal cells is caused by stress to their DNA replication when cancerous cells invade, the molecular basis for this ...

Recommended for you

Study tracks evolutionary transition to destructive cancer

February 23, 2018
Evolution describes how all living forms cope with challenges in their environment, as they struggle to persevere against formidable odds. Mutation and selective pressure—cornerstones of Darwin's theory—are the means ...

Researchers use a molecular Trojan horse to deliver chemotherapeutic drug to cancer cells

February 23, 2018
A research team at the University of California, Riverside has discovered a way for chemotherapy drug paclitaxel to target migrating, or circulating, cancer cells, which are responsible for the development of tumor metastases.

Lab-grown 'mini tumours' could personalise cancer treatment

February 23, 2018
Testing cancer drugs on miniature replicas of a patient's tumour could help doctors tailor treatment, according to new research.

An under-the-radar immune cell shows potential in fight against cancer

February 23, 2018
One of the rarest of immune cells, unknown to scientists a decade ago, might prove to be a potent weapon in stopping cancer from spreading in the body, according to new research from the University of British Columbia.

Putting black skin cancer to sleep—for good

February 22, 2018
An international research team has succeeded in stopping the growth of malignant melanoma by reactivating a protective mechanism that prevents tumor cells from dividing. The team used chemical agents to block the enzymes ...

Cancer risk associated with key epigenetic changes occurring through normal aging process

February 22, 2018
Some scientists have hypothesized that tumor-promoting changes in cells during cancer development—particularly an epigenetic change involving DNA methylation—arise from rogue cells escaping a natural cell deterioration ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.