Evidence mounts for role of mutated genes in development of schizophrenia

January 22, 2013, Johns Hopkins University School of Medicine

Johns Hopkins researchers have identified a rare gene mutation in a single family with a high rate of schizophrenia, adding to evidence that abnormal genes play a role in the development of the disease.

The researchers, in a report published in the journal , say that family members with the mutation in the gene Neuronal PAS domain protein 3 (NPAS3) appear at high risk of developing or another debilitating .

Normally functioning NPAS3 regulates the development of healthy neurons, especially in a region of the brain known as the , which appears to be affected in schizophrenia. The Johns Hopkins researchers say they have evidence that the mutation found in the family may lead to abnormal activity of NPAS3, which has implications for and function.

"Understanding the molecular and biological pathways of schizophrenia is a powerful way to advance the development of treatments that have fewer side effects and work better than the treatments now available," says study leader Frederick C. Nucifora Jr., Ph.D., D.O., M.H.S., an assistant professor of psychiatry and at the Johns Hopkins University School of Medicine. "We could definitely use better medicines."

Along with , it is widely believed that many genes play some role in causing schizophrenia, a disease characterized by a variable combination of hallucinations, delusions, impaired cognition and a loss of drive and initiative. The disorder strikes an estimated seven in every 1,000 adults in the United States. While the Johns Hopkins experiments to date show that the NPAS3 mutation is rare, Nucifora says learning as much as possible about the biological role of NPAS3 will likely lead to a better understanding of how other genes contribute to the development of schizophrenia, even in the absence of the NPAS3 mutation.

For the study, Nucifora and his team used blood samples to search the DNA of 34 people with schizophrenia or a related condition, schizoaffective disorder. All 34 were members of families in which more than one person had the disease. The investigators were specifically looking for NPAS3 —previous research suggested it could be involved in schizophrenia—and found it in one of the families.

By analyzing from that single family—two parents and four adult children—they found that the mother, who has schizophrenia, her two children with schizophrenia, and her child with major depression all had the mutant version of NPAS3. The NPAS3 gene provides instructions for the production of a protein that contains 933 amino acids. The altered gene led to a single flaw: a valine was switched to an isoleucine. Nucifora says it is not yet known how this single mutation affects the function or structure of NPAS3. A possible hint comes from the finding of other investigators that a change from valine to isoleucine in a protein known as APP is linked to Alzheimer's disease.

Nucifora cautions that, by itself, finding a mutation in a single family with mental illness doesn't establish the altered gene as the cause of the illness. Nucifora and his colleagues therefore set out to determine whether the mutation plays any role in the function of NPAS3, which serves as a master switch in cells, controlling the fate of many other genes involved in brain development and metabolism.

To do that, Nucifora and his colleagues grew neurons with either normal or mutated copies of NPAS3 in a dish, and found that the healthy neurons grew nice long extensions, a process that typically allows them to make good connections with other cells and is therefore critical for brain function. In neurons with the mutated gene, the extensions were abnormally short.

Other genes believed to be involved in mental illness also have been found to disrupt the growth of longer neuronal extensions.

"We showed that the mutation does change the function of NPAS3, with potentially harmful effects in neurons," he says. "The next step is to figure out exactly how the genetic disruption alters neuronal function, and how these abnormal neurons influence the broader function of the brain."

Nucifora and his team are now working to create a mouse with the NPAS3 mutation. "If this mutation in NPAS3 is indeed important for human disease, then we should detect abnormalities in the neurons of mice with mutant NPAS3, and the mice should have impairments in learning, memory and social behavior," he says.

Explore further: Researchers link two biological risk factors for schizophrenia

Related Stories

Researchers link two biological risk factors for schizophrenia

July 17, 2012
(Medical Xpress) -- Johns Hopkins researchers say they have discovered a cause-and-effect relationship between two well-established biological risk factors for schizophrenia previously believed to be independent of one another.

Genetic risk, stressful early infancy join to increase risk for schizophrenia

March 26, 2012
Working with genetically engineered mice and the genomes of thousands of people with schizophrenia, researchers at Johns Hopkins say they now better understand how both nature and nurture can affect one’s risks for schizophrenia ...

Schizophrenia: Small genetic changes pose risk for disease

December 16, 2011
(Medical Xpress) -- Carrying single DNA letter changes from two different genes together may increase the risk of developing schizophrenia, Johns Hopkins researchers reported in the November 16 issue of Neuron.

Rare genetic disorder points to molecules that may play role in schizophrenia

October 9, 2012
Scientists studying a rare genetic disorder have identified a molecular pathway that may play a role in schizophrenia, according to new research in the October 10 issue of The Journal of Neuroscience. The findings may one ...

Recommended for you

New software helps detect adaptive genetic mutations

February 20, 2018
Researchers from Brown University have developed a new method for sifting through genomic data in search of genetic variants that have helped populations adapt to their environments. The technique, dubbed SWIF(r), could be ...

15 new genes identified that shape human faces

February 20, 2018
Researchers from KU Leuven (Belgium) and the universities of Pittsburgh, Stanford, and Penn State have identified 15 genes that determine facial features. The findings were published in Nature Genetics.

Highly mutated protein in skin cancer plays central role in skin cell renewal

February 20, 2018
Approximately once a month, our skin completely renews itself. If this highly coordinated process goes awry, it can lead to a variety of skin diseases, ranging from skin cancer to psoriasis. Cells lining such organs as skin ...

New algorithm can pinpoint mutations favored by natural selection in large sections of the human genome

February 20, 2018
A team of scientists has developed an algorithm that can accurately pinpoint, in large regions of the human genome, mutations favored by natural selection. The finding provides deeper insight into how evolution works, and ...

Study of smoking and genetics illuminates complexities of blood pressure

February 15, 2018
Analyzing the genetics and smoking habits of more than half a million people has shed new light on the complexities of controlling blood pressure, according to a study led by researchers at Washington University School of ...

New mutation linked to ovarian cancer can be passed down through dad

February 15, 2018
A newly identified mutation, passed down through the X-chromosome, is linked to earlier onset of ovarian cancer in women and prostate cancer in father and sons. Kunle Odunsi, Kevin H. Eng and colleagues at Roswell Park Comprehensive ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.