Neuroscientists show how decision-making processes are influenced by neurons

January 15, 2013, University of Tübingen

Whether in society or nature, decisions are often the result of complex interactions between many factors. Because of this it is usually difficult to determine how much weight the different factors have in making a final decision. Neuroscientists face a similar problem since decisions made by the brain always involve many neurons. Working in collaboration, the University of Tübingen and the Max Planck Institute for Biological Cybernetics, supported within the framework of the Bernstein Network, researchers lead by CIN professor Matthias Bethge have now shown how the weight of individual neurons in the decision-making process can be reconstructed despite interdependencies between the neurons.

When we see a person on the other side of the street who looks like an old friend, the informational input enters the brain via many . But which of these are crucial in passing on the relevant information to higher , which will decide who the person is and whether to wave and say 'hello'? A research group lead by Matthias Bethge has now developed an equation that allows them to calculate to what degree a given individual sensory neuron is involved in the decision process.

To approach this question, researchers have so far considered the information about the final decision that an individual sensory neuron carries. Just as an individual is considered suspicious if he or she is found to have about a crime, those sensory neurons whose activity contains information about the eventual decision are presumed to have played a role in reaching the final decision. The problem with this approach is that neurons – much like people – are constantly communicating with each other. A neuron which itself is not involved in the decision may simply have received this information from a neighboring neuron and "joined in" the conversation. Actually, the neighboring cell sends out the crucial signal transmitted to the higher decision areas in the brain.

The new formula that has been developed by scientists addresses this by accounting not just for the information in the activity of any one neuron but also for the communication that takes place between them. This formula will now be used to determine whether only a few neurons that carry a lot of information are involved in the brain's decision process, or whether the information contained in very many neurons gets combined. In particular, it will be possible to address the more fundamental question: In which decisions does the brain use information in an optimal way, and for which decisions is its processing suboptimal?

The National Bernstein Network was initiated by the Ministry for Edu-cation and Research (BMBF) in 2004 in order to establish the research discipline of Computational Neuroscience in Germany. With the support of the BMBF, the network has developed into one of the largest research networks in the field of Computational Neuroscience worldwide. The network's namesake is the German physiologist Julius (1835-1917).

The Werner Reichardt Centre for Integrative Neuroscience (CIN) is an interdisciplinary institution at the University of Tübingen funded by the German Excellence Initiative program. Its aim is to deepen our understanding of how the brain generates functions and how brain diseases impair them, guided by the conviction that any progress in understanding can only be achieved through an integrative approach spanning multiple levels of organization.

Explore further: Scientists create first realistic 3D reconstruction of a brain circuit

More information: Haefner R.M., Gerwinn S., Macke J.H., Bethge M. (2013): "Inferring decoding strategies from choice probabilities in the presence of correlated variability". Nature Neuroscience, Jan 13, 2013. dx.doi.org/10.1038/nn.3309

Related Stories

Scientists create first realistic 3D reconstruction of a brain circuit

December 7, 2011
Researchers from the lab of Nobel laureate Bert Sakmann, MD, PhD at the Max Planck Florida Institute (MPFI) are reporting that, using a conceptually new approach and state-of-the-art research tools, they have created the ...

Mathematical model describes the collaboration of individual neurons

March 8, 2012
How do neurons in the brain communicate with each other? One common theory suggests that individual cells do not exchange signals among each other, but rather that exchange takes place between groups of cells. Researchers ...

Recommended for you

Brain zaps may help curb tics of Tourette syndrome

January 16, 2018
Electric zaps can help rewire the brains of Tourette syndrome patients, effectively reducing their uncontrollable vocal and motor tics, a new study shows.

A 'touching sight': How babies' brains process touch builds foundations for learning

January 16, 2018
Touch is the first of the five senses to develop, yet scientists know far less about the baby's brain response to touch than to, say, the sight of mom's face, or the sound of her voice.

Researchers identify protein involved in cocaine addiction

January 16, 2018
Mount Sinai researchers have identified a protein produced by the immune system—granulocyte-colony stimulating factor (G-CSF)—that could be responsible for the development of cocaine addiction.

New study reveals why some people are more creative than others

January 16, 2018
Creativity is often defined as the ability to come up with new and useful ideas. Like intelligence, it can be considered a trait that everyone – not just creative "geniuses" like Picasso and Steve Jobs – possesses in ...

Neuroscientists suggest a model for how we gain volitional control of what we hold in our minds

January 16, 2018
Working memory is a sort of "mental sketchpad" that allows you to accomplish everyday tasks such as calling in your hungry family's takeout order and finding the bathroom you were just told "will be the third door on the ...

Brain imaging predicts language learning in deaf children

January 15, 2018
In a new international collaborative study between The Chinese University of Hong Kong and Ann & Robert H. Lurie Children's Hospital of Chicago, researchers created a machine learning algorithm that uses brain scans to predict ...

1 comment

Adjust slider to filter visible comments by rank

Display comments: newest first

Tausch
not rated yet Jan 16, 2013
All senses employ tonographic maps.
If you take away a feature of a tonotopy map from any of the senses, then what does the brain, the neurons previous correlated with the removed feature, do?

There are rerouting strategies. The basis of any synesthesia.
You have 'back track' routing - you are aware of sounds when listening to a never-before-heard language. Now you know the 'meaning' when no 'meaning' has been ascribed to a sound - those conditions when first hearing sound during pre-/postnatal birth.

There was zero chance of you not hearing, including not 'hearing' 'silence'.
The probability is one. No choice involved.

What are the parallels to vision and/or blindness?
Without 'meaning' there are no interpretations - so what is happening when you hear a never-before-heard sound?

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.