Study points to a safer, better test for chromosomal defects in the fetus

January 10, 2013, Cell Press
The expanded regions show z6j 1 Mb bin results. The figure shows a 38 Mb duplication, covering the region between 64 Mb and 102 Mb of Chr 6. Credit: American Journal of Human Genetics, Srinivasan et al. Figure 3.

A noninvasive, sequencing-based approach for detecting chromosomal abnormalities in the developing fetus is safer and more informative in some cases than traditional methods, according to a study published by Cell Press January 10th in The American Journal of Human Genetics. This method, which analyzes fetal DNA in the mother's blood, could provide women with a cost-effective way to find out whether their unborn baby will have major developmental problems without risking a miscarriage.

"Our study is the first to show that almost all the information that is available from an invasive procedure is also available noninvasively from a simple maternal blood draw," says senior study author Richard Rava of Verinata Health.

Metaphase karyotypes—pictures of chromosomes taken through the microscope—have traditionally been used to detect abnormalities associated with developmental delay, , congenital defects, and autism. Recently, a method called a chromosome microarray, which uses molecular probes to detect gains or losses of within chromosomes, has been shown to provide more detailed information than a metaphase karyotype. But both of these approaches require invasive procedures that involve removing tissue from the placenta or inserting a needle into the amniotic sac to collect fluid. As a result, they increase the risk of infection and could harm the fetus during pregnancy.

This clinical sample has a karyotype with a small deletion in chromosome 7 (blue circle). Another small deletion is detected in chromosome 8 (red circle). Expanded regions show z7j and z8j 1 Mb and 100 kb bin data. The figure shows a 1 Mb deletion at bin number 150 Mb on Chr 7 (A). At higher resolution (B), this deletion is found to be 300 kb long, in the region from 150.3 Mb to 150.6 Mb of Chr 7. Note: The putative copy-number gain seen in Chr 7 at bin number 156 in the 1 Mb data is not seen in the same region in the 100 kb data. The figure also shows a 2 Mb deletion on Chr 8 (A) covering bins 46 Mb and 47 Mb. At higher resolution (B), this resolves into a 900 kb deletion, covering the region from 46.9 Mb to 47.7 Mb of Chr 8. Credit: American Journal of Human Genetics, Srinivasan et al. Figure 4.

Massively parallel sequencing (MPS) of fetal DNA in the mother's blood offers a safer alternative for the detection of across the fetal genome. But it has not been known whether MPS is as accurate as chromosome microarrays. In the new study, Rava and his team found that MPS was capable of detecting a variety of chromosomal abnormalities as accurately as chromosome microarrays.

"Such a could have clinical utility in the near future, particularly for women who either have a medical contraindication or lack access to an invasive procedure," Rava says. "This work suggests an exciting future path toward routine noninvasive detection of abnormalities in the entire fetal genome."

Explore further: New blood test for fetal anomalies being launched

More information: American Journal of Human Genetics, Srinivasan et al.: "Noninvasive Detection of Fetal Sub-Chromosome Abnormalities using Deep Sequencing of Maternal Plasma." dx.doi.org/10.1016/j.ajhg.2012.12.006

Related Stories

New blood test for fetal anomalies being launched

May 7, 2012
(AP) -- A new, noninvasive test to detect certain fetal abnormalities early in pregnancy is being launched and should be widely available next month.

Study finds massively parallel sequencing can detect fetal aneuploidies, including Down syndrome

February 10, 2012
In a study to be presented today at the Society for Maternal-Fetal Medicine's annual meeting, The Pregnancy Meeting, in Dallas, Texas, researchers will report findings that indicate that massively parallel sequencing can ...

New prenatal genetic test is much more powerful at detecting fetal abnormalities

February 9, 2012
A nationwide, federally funded study has found that testing a developing fetus' DNA through chromosomal microarray (CMA) provides more information about potential disorders than does the standard method of prenatal testing, ...

Noninvasive method accurately and efficiently detects risk of Down syndrome

February 21, 2012
Using a noninvasive test on maternal blood that deploys a novel biochemical assay and a new algorithm for analysis, scientists can detect, with a high degree of accuracy, the risk that a fetus has the chromosomal abnormalities ...

Recommended for you

Two new breast cancer genes emerge from Lynch syndrome gene study

January 18, 2018
Researchers at Columbia University Irving Medical Center and NewYork-Presbyterian have identified two new breast cancer genes. Having one of the genes—MSH6 and PMS2—approximately doubles a woman's risk of developing breast ...

Can mice really mirror humans when it comes to cancer?

January 18, 2018
A new Michigan State University study is helping to answer a pressing question among scientists of just how close mice are to people when it comes to researching cancer.

A centuries-old math equation used to solve a modern-day genetics challenge

January 18, 2018
Researchers developed a new mathematical tool to validate and improve methods used by medical professionals to interpret results from clinical genetic tests. The work was published this month in Genetics in Medicine.

Peers' genes may help friends stay in school, new study finds

January 18, 2018
While there's scientific evidence to suggest that your genes have something to do with how far you'll go in school, new research by a team from Stanford and elsewhere says the DNA of your classmates also plays a role.

Epigenetics study helps focus search for autism risk factors

January 16, 2018
Scientists have long tried to pin down the causes of autism spectrum disorder. Recent studies have expanded the search for genetic links from identifying genes toward epigenetics, the study of factors that control gene expression ...

Group recreates DNA of man who died in 1827 despite having no body to work with

January 16, 2018
An international team of researchers led by a group with deCODE Genetics, a biopharmaceutical company in Iceland, has partly recreated the DNA of a man who died in 1827, despite having no body to take tissue samples from. ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.