Scientists examine the neurobiology of decision making

January 8, 2013 by Melanie Moran, Vanderbilt University

(Medical Xpress)—We know that casting a ballot in the voting booth involves politics, values and personalities. But before you ever push the button for your candidate, your brain has already carried out an election of its own to make that action possible. New research from Vanderbilt University reveals that our brain accumulates evidence when faced with a choice and triggers an action once that evidence reaches a tipping point.

The research was published in the October issue of Psychological Review.

"Psychological models of decision-making explain that humans gradually accumulate evidence for a particular choice over time, and execute that choice when evidence reaches a critical level. However, until recently there was little understanding of how this might actually be implemented in the brain," Braden Purcell, a in the Department of Psychology and lead author of the new study, says. "We found that certain seem to represent the accumulation of evidence to a threshold and others represent the evidence itself, and that these two types of neurons interact to drive decision-making."

The researchers presented monkeys with a simple visual task of finding a target on a screen that also included distracting items. The researchers found that neurons processing from the screen fed that information to the neurons responsible for movement. These movement neurons served as gatekeepers, suppressing action until the information they received from the visual neurons was sufficiently clear. When that occurred, the movement neurons then proceeded to trigger the chosen movement.

The researchers also found that the movement neurons mediated a competition between what was being seen—in this case, the target and distracting items—and ensured that the decision was made to look to the proper item.

"What the brain seems to do is for every vote it receives for one candidate, it suppresses a vote for the other candidate, exaggerating the differences between the two," Jeffrey Schall, E. Bronson Ingram Chair in Neuroscience and co-author of the study says. "The system that makes the response doesn't listen to the vote tally until it's clear that the election is going towards one particular candidate. At that point, the circuitry that makes the movement is triggered and the movement takes place."

The findings offer potential insights into some psychological disorders.

"Impairments in decision-making are at the core of a variety of psychological and neurological impairments. For example, previous work suggests that ADHD patients may suffer deficits in controlling evidence accumulation," Purcell says. "This work may help us to understand why these deficits occur at a neurobiological level."

An important piece of this research is the novel model the researchers used in the study. The new model combined a mathematical prediction of what they thought would transpire with actual data about what the neurons were doing.

"In a model, usually all the elements are defined by mathematical equations or computational expressions," Thomas Palmeri, associate professor of psychology and a co-author of the study, says. "In our work, rather than coming up with a mathematical expression for the inputs to the neural decision process, we defined those inputs with actual recordings from neurons. This hybrid model predicts both where and when the eyes move, and variability in the timing of those movements."

"This approach provides insight between psychological processes and what neurons are doing," Schall says. "If we want to understand the mind- problem, this is what solutions look like."

Explore further: New insight into impulse control

Related Stories

New insight into impulse control

August 30, 2011
How the brain controls impulsive behavior may be significantly different than psychologists have thought for the last 40 years.

Mathematical model describes the collaboration of individual neurons

March 8, 2012
How do neurons in the brain communicate with each other? One common theory suggests that individual cells do not exchange signals among each other, but rather that exchange takes place between groups of cells. Researchers ...

New insight into why haste makes waste

November 7, 2012
Why do our brains make more mistakes when we act quickly? A new study demonstrates how the brain follows Ben Franklin's famous dictum, "Take time for all things: great haste makes great waste."

Warning! Collision imminent! The brain's quick interceptions help you navigate the world

February 7, 2012
Researchers at The Neuro and the University of Maryland have figured out the mathematical calculations that specific neurons employ in order to inform us of our distance from an object and the 3-D velocities of moving objects ...

Recommended for you

Research reveals atomic-level changes in ALS-linked protein

January 18, 2018
For the first time, researchers have described atom-by-atom changes in a family of proteins linked to amyotrophic lateral sclerosis (ALS), a group of brain disorders known as frontotemporal dementia and degenerative diseases ...

Fragile X finding shows normal neurons that interact poorly

January 18, 2018
Neurons in mice afflicted with the genetic defect that causes Fragile X syndrome (FXS) appear similar to those in healthy mice, but these neurons fail to interact normally, resulting in the long-known cognitive impairments, ...

How your brain remembers what you had for dinner last night

January 17, 2018
Confirming earlier computational models, researchers at University of California San Diego and UC San Diego School of Medicine, with colleagues in Arizona and Louisiana, report that episodic memories are encoded in the hippocampus ...

Recording a thought's fleeting trip through the brain

January 17, 2018
University of California, Berkeley neuroscientists have tracked the progress of a thought through the brain, showing clearly how the prefrontal cortex at the front of the brain coordinates activity to help us act in response ...

Midbrain 'start neurons' control whether we walk or run

January 17, 2018
Locomotion comprises the most fundamental movements we perform. It is a complex sequence from initiating the first step, to stopping when we reach our goal. At the same time, locomotion is executed at different speeds to ...

Miles Davis is not Mozart: The brains of jazz and classical pianists work differently

January 16, 2018
Keith Jarret, world-famous jazz pianist, once answered in an interview when asked if he would ever be interested in doing a concert where he would play both jazz and classical music: "No, that's hilarious. [...] It's like ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.